Abstract:Large Language Models (LLMs) have shown remarkable capabilities in various domains, yet their economic impact has been limited by challenges in tool use and function calling. This paper introduces ThorV2, a novel architecture that significantly enhances LLMs' function calling abilities. We develop a comprehensive benchmark focused on HubSpot CRM operations to evaluate ThorV2 against leading models from OpenAI and Anthropic. Our results demonstrate that ThorV2 outperforms existing models in accuracy, reliability, latency, and cost efficiency for both single and multi-API calling tasks. We also show that ThorV2 is far more reliable and scales better to multistep tasks compared to traditional models. Our work offers the tantalizing possibility of more accurate function-calling compared to today's best-performing models using significantly smaller LLMs. These advancements have significant implications for the development of more capable AI assistants and the broader application of LLMs in real-world scenarios.
Abstract:To assist game developers in crafting game NPCs, we present EvolvingBehavior, a novel tool for genetic programming to evolve behavior trees in Unreal Engine 4. In an initial evaluation, we compare evolved behavior to hand-crafted trees designed by our researchers, and to randomly-grown trees, in a 3D survival game. We find that EvolvingBehavior is capable of producing behavior approaching the designer's goals in this context. Finally, we discuss implications and future avenues of exploration for co-creative game AI design tools, as well as challenges and difficulties in behavior tree evolution.