Abstract:This paper presents a novel approach to compute food composition data for Indian recipes using a knowledge graph for Indian food (FKG.in) and LLMs. The primary focus is to provide a broad overview of an automated food composition analysis workflow and describe its core functionalities: nutrition data aggregation, food composition analysis, and LLM-augmented information resolution. This workflow aims to complement FKG.in and iteratively supplement food composition data from verified knowledge bases. Additionally, this paper highlights the challenges of representing Indian food and accessing food composition data digitally. It also reviews three key sources of food composition data: the Indian Food Composition Tables, the Indian Nutrient Databank, and the Nutritionix API. Furthermore, it briefly outlines how users can interact with the workflow to obtain diet-based health recommendations and detailed food composition information for numerous recipes. We then explore the complex challenges of analyzing Indian recipe information across dimensions such as structure, multilingualism, and uncertainty as well as present our ongoing work on LLM-based solutions to address these issues. The methods proposed in this workshop paper for AI-driven knowledge curation and information resolution are application-agnostic, generalizable, and replicable for any domain.
Abstract:This paper presents an ontology design along with knowledge engineering, and multilingual semantic reasoning techniques to build an automated system for assimilating culinary information for Indian food in the form of a knowledge graph. The main focus is on designing intelligent methods to derive ontology designs and capture all-encompassing knowledge about food, recipes, ingredients, cooking characteristics, and most importantly, nutrition, at scale. We present our ongoing work in this workshop paper, describe in some detail the relevant challenges in curating knowledge of Indian food, and propose our high-level ontology design. We also present a novel workflow that uses AI, LLM, and language technology to curate information from recipe blog sites in the public domain to build knowledge graphs for Indian food. The methods for knowledge curation proposed in this paper are generic and can be replicated for any domain. The design is application-agnostic and can be used for AI-driven smart analysis, building recommendation systems for Personalized Digital Health, and complementing the knowledge graph for Indian food with contextual information such as user information, food biochemistry, geographic information, agricultural information, etc.