Abstract:Searching for relative mobile user interface (UI) design examples can aid interface designers in gaining inspiration and comparing design alternatives. However, finding such design examples is challenging, especially as current search systems rely on only text-based queries and do not consider the UI structure and content into account. This paper introduces VINS, a visual search framework, that takes as input a UI image (wireframe, high-fidelity) and retrieves visually similar design examples. We first survey interface designers to better understand their example finding process. We then develop a large-scale UI dataset that provides an accurate specification of the interface's view hierarchy (i.e., all the UI components and their specific location). By utilizing this dataset, we propose an object-detection based image retrieval framework that models the UI context and hierarchical structure. The framework achieves a mean Average Precision of 76.39\% for the UI detection and high performance in querying similar UI designs.
Abstract:Player modeling is an important concept that has gained much attention in game research due to its utility in developing adaptive techniques to target better designs for engagement and retention. Previous work has explored modeling individual differences using machine learning algorithms per- formed on aggregated game actions. However, players' individual differences may be better manifested through sequential patterns of the in-game player's actions. While few works have explored sequential analysis of player data, none have explored the use of Hidden Markov Models (HMM) to model individual differences, which is the topic of this paper. In par- ticular, we developed a modeling approach using data col- lected from players playing a Role-Playing Game (RPG). Our proposed approach is two fold: 1. We present a Hidden Markov Model (HMM) of player in-game behaviors to model individual differences, and 2. using the output of the HMM, we generate behavioral features used to classify real world players' characteristics, including game expertise and the big five personality traits. Our results show predictive power for some of personality traits, such as game expertise and conscientiousness, but the most influential factor was game expertise.