Abstract:Prostate cancer (PCa) is one of the most common and aggressive cancers worldwide. The Gleason score (GS) system is the standard way of classifying prostate cancer and the most reliable method to determine the severity and treatment to follow. The pathologist looks at the arrangement of cancer cells in the prostate and assigns a score on a scale that ranges from 6 to 10. Automatic analysis of prostate whole-slide images (WSIs) is usually addressed as a binary classification problem, which misses the finer distinction between stages given by the GS. This paper presents a probabilistic deep learning ordinal classification method that can estimate the GS from a prostate WSI. Approaching the problem as an ordinal regression task using a differentiable probabilistic model not only improves the interpretability of the results, but also improves the accuracy of the model when compared to conventional deep classification and regression architectures.
Abstract:A density matrix describes the statistical state of a quantum system. It is a powerful formalism to represent both the quantum and classical uncertainty of quantum systems and to express different statistical operations such as measurement, system combination and expectations as linear algebra operations. This paper explores how density matrices can be used as a building block to build machine learning models exploiting their ability to straightforwardly combine linear algebra and probability. One of the main results of the paper is to show that density matrices coupled with random Fourier features could approximate arbitrary probability distributions over $\mathbb{R}^n$. Based on this finding the paper builds different models for density estimation, classification and regression. These models are differentiable, so it is possible to integrate them with other differentiable components, such as deep learning architectures and to learn their parameters using gradient-based optimization. In addition, the paper presents optimization-less training strategies based on estimation and model averaging. The models are evaluated in benchmark tasks and the results are reported and discussed.
Abstract:Diabetic Retinopathy (DR) is one of the microvascular complications of Diabetes Mellitus, which remains as one of the leading causes of blindness worldwide. Computational models based on Convolutional Neural Networks represent the state of the art for the automatic detection of DR using eye fundus images. Most of the current work address this problem as a binary classification task. However, including the grade estimation and quantification of predictions uncertainty can potentially increase the robustness of the model. In this paper, a hybrid Deep Learning-Gaussian process method for DR diagnosis and uncertainty quantification is presented. This method combines the representational power of deep learning, with the ability to generalize from small datasets of Gaussian process models. The results show that uncertainty quantification in the predictions improves the interpretability of the method as a diagnostic support tool. The source code to replicate the experiments is publicly available at https://github.com/stoledoc/DLGP-DR-Diagnosis.