Abstract:Diabetic retinopathy (DR) is one of the leading causes of blindness in the working-age population of developed countries, caused by a side effect of diabetes that reduces the blood supply to the retina. Deep neural networks have been widely used in automated systems for DR classification on eye fundus images. However, these models need a large number of annotated images. In the medical domain, annotations from experts are costly, tedious, and time-consuming; as a result, a limited number of annotated images are available. This paper presents a semi-supervised method that leverages unlabeled images and labeled ones to train a model that detects diabetic retinopathy. The proposed method uses unsupervised pretraining via self-supervised learning followed by supervised fine-tuning with a small set of labeled images and knowledge distillation to increase the performance in classification task. This method was evaluated on the EyePACS test and Messidor-2 dataset achieving 0.94 and 0.89 AUC respectively using only 2% of EyePACS train labeled images.
Abstract:Diabetic Retinopathy (DR) is one of the microvascular complications of Diabetes Mellitus, which remains as one of the leading causes of blindness worldwide. Computational models based on Convolutional Neural Networks represent the state of the art for the automatic detection of DR using eye fundus images. Most of the current work address this problem as a binary classification task. However, including the grade estimation and quantification of predictions uncertainty can potentially increase the robustness of the model. In this paper, a hybrid Deep Learning-Gaussian process method for DR diagnosis and uncertainty quantification is presented. This method combines the representational power of deep learning, with the ability to generalize from small datasets of Gaussian process models. The results show that uncertainty quantification in the predictions improves the interpretability of the method as a diagnostic support tool. The source code to replicate the experiments is publicly available at https://github.com/stoledoc/DLGP-DR-Diagnosis.