Abstract:This paper aims to develop a new deep learning-inspired gaming approach for early detection of dementia. This research integrates a robust convolutional neural network (CNN)-based model for early dementia detection using health metrics data as well as facial image data through a cognitive assessment-based gaming application. We have collected 1000 data samples of health metrics dataset from Apollo Diagnostic Center Kolkata that is labeled as either demented or non-demented for the training of MOD-1D-CNN for the game level 1 and another dataset of facial images containing 1800 facial data that are labeled as either demented or non-demented is collected by our research team for the training of MOD-2D-CNN model in-game level 2. In our work, the loss for the proposed MOD-1D-CNN model is 0.2692 and the highest accuracy is 70.50% for identifying the dementia traits using real-life health metrics data. Similarly, the proposed MOD-2D-CNN model loss is 0.1755 and the highest accuracy is obtained here 95.72% for recognizing the dementia status using real-life face-based image data. Therefore, a rule-based weightage method is applied to combine both the proposed methods to achieve the final decision. The MOD-1D-CNN and MOD-2D-CNN models are more lightweight and computationally efficient alternatives because they have a significantly lower number of parameters when compared to the other state-of-the-art models. We have compared their accuracies and parameters with the other state-of-the-art deep learning models.
Abstract:Attackers are now using sophisticated techniques, like polymorphism, to change the attack pattern for each new attack. Thus, the detection of novel attacks has become the biggest challenge for cyber experts and researchers. Recently, anomaly and hybrid approaches are used for the detection of network attacks. Detecting novel attacks, on the other hand, is a key enabler for a wide range of IoT applications. Novel attacks can easily evade existing signature-based detection methods and are extremely difficult to detect, even going undetected for years. Existing machine learning models have also failed to detect the attack and have a high rate of false positives. In this paper, a rule-based deep neural network technique has been proposed as a framework for addressing the problem of detecting novel attacks. The designed framework significantly improves respective benchmark results, including the CICIDS 2017 dataset. The experimental results show that the proposed model keeps a good balance between attack detection, untruthful positive rates, and untruthful negative rates. For novel attacks, the model has an accuracy of more than 99%. During the automatic interaction between network-devices (IoT), security and privacy are the primary obstacles. Our proposed method can handle these obstacles efficiently and finally identify, and classify the different levels of threats.
Abstract:In today world of enormous amounts of data, it is very important to extract useful knowledge from it. This can be accomplished by feature subset selection. Feature subset selection is a method of selecting a minimum number of features with the help of which our machine can learn and predict which class a particular data belongs to. We will introduce a new adaptive algorithm called Feature selection Penguin Search optimization algorithm which is a metaheuristic approach. It is adapted from the natural hunting strategy of penguins in which a group of penguins take jumps at random depths and come back and share the status of food availability with other penguins and in this way, the global optimum solution is found. In order to explore the feature subset candidates, the bioinspired approach Penguin Search optimization algorithm generates during the process a trial feature subset and estimates its fitness value by using three different classifiers for each case: Random Forest, Nearest Neighbour and Support Vector Machines. However, we are planning to implement our proposed approach Feature selection Penguin Search optimization algorithm on some well known benchmark datasets collected from the UCI repository and also try to evaluate and compare its classification accuracy with some state of art algorithms.
Abstract:The advent of Web 2.0 has led to an increase in the amount of sentimental content available in the Web. Such content is often found in social media web sites in the form of movie or product reviews, user comments, testimonials, messages in discussion forums etc. Timely discovery of the sentimental or opinionated web content has a number of advantages, the most important of all being monetization. Understanding of the sentiments of human masses towards different entities and products enables better services for contextual advertisements, recommendation systems and analysis of market trends. The focus of our project is sentiment focussed web crawling framework to facilitate the quick discovery of sentimental contents of movie reviews and hotel reviews and analysis of the same. We use statistical methods to capture elements of subjective style and the sentence polarity. The paper elaborately discusses two supervised machine learning algorithms: K-Nearest Neighbour(K-NN) and Naive Bayes and compares their overall accuracy, precisions as well as recall values. It was seen that in case of movie reviews Naive Bayes gave far better results than K-NN but for hotel reviews these algorithms gave lesser, almost same accuracies.