Abstract:Despite significant progress in computational pathology, many AI models remain black-box and difficult to interpret, posing a major barrier to clinical adoption due to limited transparency and explainability. This has motivated continued interest in engineered image-based biomarkers, which offer greater interpretability but are often proposed based on anecdotal evidence or fragmented prior literature rather than systematic biological validation. We introduce SAGE (Structured Agentic system for hypothesis Generation and Evaluation), an agentic AI system designed to identify interpretable, engineered pathology biomarkers by grounding them in biological evidence. SAGE integrates literature-anchored reasoning with multimodal data analysis to correlate image-derived features with molecular biomarkers, such as gene expression, and clinically relevant outcomes. By coordinating specialized agents for biological contextualization and empirical hypothesis validation, SAGE prioritizes transparent, biologically supported biomarkers and advances the clinical translation of computational pathology.
Abstract:In this paper, we propose a style-based conditional video generative model. We introduce a novel temporal generator based on a set of learned sinusoidal bases. Our method learns dynamic representations of various actions that are independent of image content and can be transferred between different actors. Beyond the significant enhancement of video quality compared to prevalent methods, we demonstrate that the disentangled dynamic and content permit their independent manipulation, as well as temporal GAN-inversion to retrieve and transfer a video motion from one content or identity to another without further preprocessing such as landmark points.