Abstract:We study the problem of determining the configuration of $n$ points, referred to as mobile nodes, by utilizing pairwise distances to $m$ fixed points known as anchor nodes. In the standard setting, we have information about the distances between anchors (anchor-anchor) and between anchors and mobile nodes (anchor-mobile), but the distances between mobile nodes (mobile-mobile) are not known. For this setup, the Nystr\"om method is a viable technique for estimating the positions of the mobile nodes. This study focuses on the setting where the anchor-mobile block of the distance matrix contains only partial distance information. First, we establish a relationship between the columns of the anchor-mobile block in the distance matrix and the columns of the corresponding block in the Gram matrix via a graph Laplacian. Exploiting this connection, we introduce a novel sampling model that frames the position estimation problem as low-rank recovery of an inner product matrix, given a subset of its expansion coefficients in a special non-orthogonal basis. This basis and its dual basis--the central elements of our model--are explicitly derived. Our analysis is grounded in a specific centering of the points that is unique to the Nystr\"om method. With this in mind, we extend previous work in Euclidean distance geometry by providing a general dual basis approach for points centered anywhere.
Abstract:Classical multidimensional scaling (CMDS) is a technique that aims to embed a set of objects in a Euclidean space given their pairwise Euclidean distance matrix. The main part of CMDS is based on double centering a squared distance matrix and employing a truncated eigendecomposition to recover the point coordinates. A central result in CMDS connects the squared Euclidean matrix to a Gram matrix derived from the set of points. In this paper, we study a dual basis approach to classical multidimensional scaling. We give an explicit formula for the dual basis and fully characterize the spectrum of an essential matrix in the dual basis framework. We make connections to a related problem in metric nearness.