We study the problem of determining the configuration of $n$ points, referred to as mobile nodes, by utilizing pairwise distances to $m$ fixed points known as anchor nodes. In the standard setting, we have information about the distances between anchors (anchor-anchor) and between anchors and mobile nodes (anchor-mobile), but the distances between mobile nodes (mobile-mobile) are not known. For this setup, the Nystr\"om method is a viable technique for estimating the positions of the mobile nodes. This study focuses on the setting where the anchor-mobile block of the distance matrix contains only partial distance information. First, we establish a relationship between the columns of the anchor-mobile block in the distance matrix and the columns of the corresponding block in the Gram matrix via a graph Laplacian. Exploiting this connection, we introduce a novel sampling model that frames the position estimation problem as low-rank recovery of an inner product matrix, given a subset of its expansion coefficients in a special non-orthogonal basis. This basis and its dual basis--the central elements of our model--are explicitly derived. Our analysis is grounded in a specific centering of the points that is unique to the Nystr\"om method. With this in mind, we extend previous work in Euclidean distance geometry by providing a general dual basis approach for points centered anywhere.