Classical multidimensional scaling (CMDS) is a technique that aims to embed a set of objects in a Euclidean space given their pairwise Euclidean distance matrix. The main part of CMDS is based on double centering a squared distance matrix and employing a truncated eigendecomposition to recover the point coordinates. A central result in CMDS connects the squared Euclidean matrix to a Gram matrix derived from the set of points. In this paper, we study a dual basis approach to classical multidimensional scaling. We give an explicit formula for the dual basis and fully characterize the spectrum of an essential matrix in the dual basis framework. We make connections to a related problem in metric nearness.