Abstract:Correlation Plenoptic Imaging (CPI) is a novel technological imaging modality enabling to overcome drawbacks of standard plenoptic devices, while preserving their advantages. However, a major challenge in view of real-time application of CPI is related with the relevant amount of required frames and the consequent computational-intensive processing algorithm. In this work, we describe the design and implementation of an optimized processing algorithm that is portable to an efficient computational environment and exploits the highly parallel algorithm offered by GPUs. Improvements by a factor ranging from 20x, for correlation measurement, to 500x, for refocusing, are demonstrated. Exploration of the relation between the improvement in performance achieved and actual GPU capabilities, also indicates the feasibility of near-real time processing capability, opening up to the potential use of CPI for practical real-time application.
Abstract:Recent advances in photographic sensing technologies have made it possible to achieve light detection in terms of a single photon. Photon counting sensors are being increasingly used in many diverse applications. We address the problem of jointly recovering spatial and temporal scene radiance from very few photon counts. Our ConvNet-based scheme effectively combines spatial and temporal information present in measurements to reduce noise. We demonstrate that using our method one can acquire videos at a high frame rate and still achieve good quality signal-to-noise ratio. Experiments show that the proposed scheme performs quite well in different challenging scenarios while the existing denoising schemes are unable to handle them.