Abstract:Uniform expressivity guarantees that a Graph Neural Network (GNN) can express a query without the parameters depending on the size of the input graphs. This property is desirable in applications in order to have number of trainable parameters that is independent of the size of the input graphs. Uniform expressivity of the two variable guarded fragment (GC2) of first order logic is a well-celebrated result for Rectified Linear Unit (ReLU) GNNs [Barcelo & al., 2020]. In this article, we prove that uniform expressivity of GC2 queries is not possible for GNNs with a wide class of Pfaffian activation functions (including the sigmoid and tanh), answering a question formulated by [Grohe, 2021]. We also show that despite these limitations, many of those GNNs can still efficiently express GC2 queries in a way that the number of parameters remains logarithmic on the maximal degree of the input graphs. Furthermore, we demonstrate that a log-log dependency on the degree is achievable for a certain choice of activation function. This shows that uniform expressivity can be successfully relaxed by covering large graphs appearing in practical applications. Our experiments illustrates that our theoretical estimates hold in practice.
Abstract:Several popular language models represent local contexts in an input text as bags of words. Such representations are naturally encoded by a sequence graph whose vertices are the distinct words occurring in x, with edges representing the (ordered) co-occurrence of two words within a sliding window of size w. However, this compressed representation is not generally bijective, and may introduce some degree of ambiguity. Some sequence graphs may admit several realizations as a sequence, while others may not admit any realization. In this paper, we study the realizability and ambiguity of sequence graphs from a combinatorial and computational point of view. We consider the existence and enumeration of realizations of a sequence graph under multiple settings: window size w, presence/absence of graph orientation, and presence/absence of weights (multiplicities). When w = 2, we provide polynomial time algorithms for realizability and enumeration in all cases except the undirected/weighted setting, where we show the #P-hardness of enumeration. For a window of size at least 3, we prove hardness of all variants, even when w is considered as a constant, with the notable exception of the undirected/unweighted case for which we propose an XP algorithms for both (realizability and enumeration) problems, tight due to a corresponding W[1]-hardness result. We conclude with an integer program formulation to solve the realizability problem, and with dynamic programming to solve the enumeration problem. This work leaves open the membership to NP for both problems, a non-trivial question due to the existence of minimum realizations having exponential size on the instance encoding.
Abstract:Data-driven algorithm design is a paradigm that uses statistical and machine learning techniques to select from a class of algorithms for a computational problem an algorithm that has the best expected performance with respect to some (unknown) distribution on the instances of the problem. We build upon recent work in this line of research by introducing the idea where, instead of selecting a single algorithm that has the best performance, we allow the possibility of selecting an algorithm based on the instance to be solved. In particular, given a representative sample of instances, we learn a neural network that maps an instance of the problem to the most appropriate algorithm {\em for that instance}. We formalize this idea and derive rigorous sample complexity bounds for this learning problem, in the spirit of recent work in data-driven algorithm design. We then apply this approach to the problem of making good decisions in the branch-and-cut framework for mixed-integer optimization (e.g., which cut to add?). In other words, the neural network will take as input a mixed-integer optimization instance and output a decision that will result in a small branch-and-cut tree for that instance. Our computational results provide evidence that our particular way of using neural networks for cut selection can make a significant impact in reducing branch-and-cut tree sizes, compared to previous data-driven approaches.
Abstract:The expressivity of Graph Neural Networks (GNNs) can be entirely characterized by appropriate fragments of the first-order logic. Namely, any query of the two variable fragment of graded modal logic (GC2) interpreted over labeled graphs can be expressed using a GNN whose size depends only on the depth of the query. As pointed out by [Barcelo & Al., 2020, Grohe, 2021], this description holds for a family of activation functions, leaving the possibility for a hierarchy of logics expressible by GNNs depending on the chosen activation function. In this article, we show that such hierarchy indeed exists by proving that GC2 queries cannot be expressed by GNNs with polynomial activation functions. This implies a separation between polynomial and popular non-polynomial activations (such as ReLUs, sigmoid and hyperbolic tan and others) and answers an open question formulated by [Grohe, 2021].
Abstract:In this article we present new results about the expressivity of Graph Neural Networks (GNNs). We prove that for any GNN with piecewise polynomial activations, whose architecture size does not grow with the graph input sizes, there exists a pair of non-isomorphic rooted trees of depth two such that the GNN cannot distinguish their root vertex up to an arbitrary number of iterations. The proof relies on tools from the algebra of symmetric polynomials. In contrast, it was already known that unbounded GNNs (those whose size is allowed to change with the graph sizes) with piecewise polynomial activations can distinguish these vertices in only two iterations. Our results imply a strict separation between bounded and unbounded size GNNs, answering an open question formulated by [Grohe, 2021]. We next prove that if one allows activations that are not piecewise polynomial, then in two iterations a single neuron perceptron can distinguish the root vertices of any pair of nonisomorphic trees of depth two (our results hold for activations like the sigmoid, hyperbolic tan and others). This shows how the power of graph neural networks can change drastically if one changes the activation function of the neural networks. The proof of this result utilizes the Lindemann-Weierstrauss theorem from transcendental number theory.
Abstract:In this article we present new results on neural networks with linear threshold activation functions. We precisely characterize the class of functions that are representable by such neural networks and show that 2 hidden layers are necessary and sufficient to represent any function representable in the class. This is a surprising result in the light of recent exact representability investigations for neural networks using other popular activation functions like rectified linear units (ReLU). We also give precise bounds on the sizes of the neural networks required to represent any function in the class. Finally, we design an algorithm to solve the empirical risk minimization (ERM) problem to global optimality for these neural networks with a fixed architecture. The algorithm's running time is polynomial in the size of the data sample, if the input dimension and the size of the network architecture are considered fixed constants. The algorithm is unique in the sense that it works for any architecture with any number of layers, whereas previous polynomial time globally optimal algorithms work only for very restricted classes of architectures.