The expressivity of Graph Neural Networks (GNNs) can be entirely characterized by appropriate fragments of the first-order logic. Namely, any query of the two variable fragment of graded modal logic (GC2) interpreted over labeled graphs can be expressed using a GNN whose size depends only on the depth of the query. As pointed out by [Barcelo & Al., 2020, Grohe, 2021], this description holds for a family of activation functions, leaving the possibility for a hierarchy of logics expressible by GNNs depending on the chosen activation function. In this article, we show that such hierarchy indeed exists by proving that GC2 queries cannot be expressed by GNNs with polynomial activation functions. This implies a separation between polynomial and popular non-polynomial activations (such as ReLUs, sigmoid and hyperbolic tan and others) and answers an open question formulated by [Grohe, 2021].