Abstract:Uniform expressivity guarantees that a Graph Neural Network (GNN) can express a query without the parameters depending on the size of the input graphs. This property is desirable in applications in order to have number of trainable parameters that is independent of the size of the input graphs. Uniform expressivity of the two variable guarded fragment (GC2) of first order logic is a well-celebrated result for Rectified Linear Unit (ReLU) GNNs [Barcelo & al., 2020]. In this article, we prove that uniform expressivity of GC2 queries is not possible for GNNs with a wide class of Pfaffian activation functions (including the sigmoid and tanh), answering a question formulated by [Grohe, 2021]. We also show that despite these limitations, many of those GNNs can still efficiently express GC2 queries in a way that the number of parameters remains logarithmic on the maximal degree of the input graphs. Furthermore, we demonstrate that a log-log dependency on the degree is achievable for a certain choice of activation function. This shows that uniform expressivity can be successfully relaxed by covering large graphs appearing in practical applications. Our experiments illustrates that our theoretical estimates hold in practice.
Abstract:This work characterizes equivariant polynomial functions from tuples of tensor inputs to tensor outputs. Loosely motivated by physics, we focus on equivariant functions with respect to the diagonal action of the orthogonal group on tensors. We show how to extend this characterization to other linear algebraic groups, including the Lorentz and symplectic groups. Our goal behind these characterizations is to define equivariant machine learning models. In particular, we focus on the sparse vector estimation problem. This problem has been broadly studied in the theoretical computer science literature, and explicit spectral methods, derived by techniques from sum-of-squares, can be shown to recover sparse vectors under certain assumptions. Our numerical results show that the proposed equivariant machine learning models can learn spectral methods that outperform the best theoretically known spectral methods in some regimes. The experiments also suggest that learned spectral methods can solve the problem in settings that have not yet been theoretically analyzed. This is an example of a promising direction in which theory can inform machine learning models and machine learning models could inform theory.