Abstract:The First-Mile Last-Mile (FMLM) connectivity is crucial for improving public transit accessibility and efficiency, particularly in sprawling suburban regions where traditional fixed-route transit systems are often inadequate. Autonomous on-Demand Shuttles (AODS) hold a promising option for FMLM connections due to their cost-effectiveness and improved safety features, thereby enhancing user convenience and reducing reliance on personal vehicles. A critical issue in AODS service design is the optimization of travel paths, for which realistic traffic network assignment combined with optimal routing offers a viable solution. In this study, we have designed an AODS controller that integrates a mesoscopic simulation-based dynamic traffic assignment model with a greedy insertion heuristics approach to optimize the travel routes of the shuttles. The controller also considers the charging infrastructure/strategies and the impact of the shuttles on regular traffic flow for routes and fleet-size planning. The controller is implemented in Aimsun traffic simulator considering Lake Nona in Orlando, Florida as a case study. We show that, under the present demand based on 1% of total trips as transit riders, a fleet of 3 autonomous shuttles can serve about 80% of FMLM trip requests on-demand basis with an average waiting time below 4 minutes. Additional power sources have significant effect on service quality as the inactive waiting time for charging would increase the fleet size. We also show that low-speed autonomous shuttles would have negligible impact on regular vehicle flow, making them suitable for suburban areas. These findings have important implications for sustainable urban planning and public transit operations.
Abstract:Traffic prediction during hurricane evacuation is essential for optimizing the use of transportation infrastructures. It can reduce evacuation time by providing information on future congestion in advance. However, evacuation traffic prediction can be challenging as evacuation traffic patterns is significantly different than regular period traffic. A data-driven traffic prediction model is developed in this study by utilizing traffic detector and Facebook movement data during Hurricane Ian, a rapidly intensifying hurricane. We select 766 traffic detectors from Florida's 4 major interstates to collect traffic features. Additionally, we use Facebook movement data collected during Hurricane Ian's evacuation period. The deep-learning model is first trained on regular period (May-August 2022) data to understand regular traffic patterns and then Hurricane Ian's evacuation period data is used as test data. The model achieves 95% accuracy (RMSE = 356) during regular period, but it underperforms with 55% accuracy (RMSE = 1084) during the evacuation period. Then, a transfer learning approach is adopted where a pretrained model is used with additional evacuation related features to predict evacuation period traffic. After transfer learning, the model achieves 89% accuracy (RMSE = 514). Adding Facebook movement data further reduces model's RMSE value to 393 and increases accuracy to 93%. The proposed model is capable to forecast traffic up to 6-hours in advance. Evacuation traffic management officials can use the developed traffic prediction model to anticipate future traffic congestion in advance and take proactive measures to reduce delays during evacuation.
Abstract:Hurricane evacuation, ordered to save lives of people of coastal regions, generates high traffic demand with increased crash risk. To mitigate such risk, transportation agencies need to anticipate highway locations with high crash risks to deploy appropriate countermeasures. With ubiquitous sensors and communication technologies, it is now possible to retrieve micro-level vehicular data containing individual vehicle trajectory and speed information. Such high-resolution vehicle data, potentially available in real time, can be used to assess prevailing traffic safety conditions. Using vehicle speed and acceleration profiles, potential crash risks can be predicted in real time. Previous studies on real-time crash risk prediction mainly used data from infrastructure-based sensors which may not cover many road segments. In this paper, we present methods to determine potential crash risks during hurricane evacuation from an emerging alternative data source known as connected vehicle data. Such data contain vehicle location, speed, and acceleration information collected at a very high frequency (less than 30 seconds). To predict potential crash risks, we utilized a dataset collected during the evacuation period of Hurricane Ida on Interstate-10 (I-10) in the state of Louisiana. Multiple machine learning models were trained considering weather features and different traffic characteristics extracted from the connected vehicle data in 5-minute intervals. The results indicate that the Gaussian Process Boosting (GPBoost) and Extreme Gradient Boosting (XGBoost) models perform better (recall = 0.91) than other models. The real-time connected vehicle data for crash risks assessment will allow traffic managers to efficiently utilize resources to proactively take safety measures.
Abstract:The increasing market penetration of electric vehicles (EVs) may change the travel behavior of drivers and pose a significant electricity demand on the power system. Since the electricity demand depends on the travel behavior of EVs, which are inherently uncertain, the forecasting of daily charging demand (CD) will be a challenging task. In this paper, we use the recorded GPS data of EVs and conventional gasoline-powered vehicles from the same city to investigate the potential shift in the travel behavior of drivers from conventional vehicles to EVs and forecast the spatiotemporal patterns of daily CD. Our analysis reveals that the travel behavior of EVs and conventional vehicles are similar. Also, the forecasting results indicate that the developed models can generate accurate spatiotemporal patterns of the daily CD.
Abstract:Proactive evacuation traffic management largely depends on real-time monitoring and prediction of traffic flow at a high spatiotemporal resolution. However, evacuation traffic prediction is challenging due to the uncertainties caused by sudden changes in projected hurricane paths and consequently household evacuation behavior. Moreover, modeling spatiotemporal traffic flow patterns requires extensive data over a longer time period, whereas evacuations typically last for 2 to 5 days. In this paper, we present a novel data-driven approach for predicting evacuation traffic at a network scale. We develop a dynamic graph convolution LSTM (DGCN-LSTM) model to learn the network dynamics of hurricane evacuation. We first train the model for non-evacuation period traffic data showing that the model outperforms existing deep learning models for predicting non-evacuation period traffic with an RMSE value of 226.84. However, when we apply the model for evacuation period, the RMSE value increased to 1440.99. We overcome this issue by adopting a transfer learning approach with additional features related to evacuation traffic demand such as distance from the evacuation zone, time to landfall, and other zonal level features to control the transfer of information (network dynamics) from non-evacuation periods to evacuation periods. The final transfer learned DGCN-LSTM model performs well to predict evacuation traffic flow (RMSE=399.69). The implemented model can be applied to predict evacuation traffic over a longer forecasting horizon (6 hour). It will assist transportation agencies to activate appropriate traffic management strategies to reduce delays for evacuating traffic.
Abstract:We present a novel data-driven approach of learning traffic flow patterns of a transportation network given that many instances of origin to destination (OD) travel demand and link flows of the network are available. Instead of estimating traffic flow patterns assuming certain user behavior (e.g., user equilibrium or system optimal), here we explore the idea of learning those flow patterns directly from the data. To implement this idea, we have formulated the traffic-assignment problem as a data-driven learning problem and developed a neural network-based framework known as Graph Convolutional Neural Network (GCNN) to solve it. The proposed framework represents the transportation network and OD demand in an efficient way and utilizes the diffusion process of multiple OD demands from nodes to links. We validate the solutions of the model against analytical solutions generated from running static user equilibrium-based traffic assignments over Sioux Falls and East Massachusetts networks. The validation result shows that the implemented GCNN model can learn the flow patterns very well with less than 2% mean absolute difference between the actual and estimated link flows for both networks under varying congested conditions. When the training of the model is complete, it can instantly determine the traffic flows of a large-scale network. Hence this approach can overcome the challenges of deploying traffic assignment models over large-scale networks and open new directions of research in data-driven network modeling.
Abstract:The increasing market penetration of electric vehicles (EVs) may pose significant electricity demand on power systems. This electricity demand is affected by the inherent uncertainties of EVs' travel behavior that makes forecasting the daily charging demand (CD) very challenging. In this project, we use the National House Hold Survey (NHTS) data to form sequences of trips, and develop machine learning models to predict the parameters of the next trip of the drivers, including trip start time, end time, and distance. These parameters are later used to model the temporal charging behavior of EVs. The simulation results show that the proposed modeling can effectively estimate the daily CD pattern based on travel behavior of EVs, and simple machine learning techniques can forecast the travel parameters with acceptable accuracy.