Abstract:The First-Mile Last-Mile (FMLM) connectivity is crucial for improving public transit accessibility and efficiency, particularly in sprawling suburban regions where traditional fixed-route transit systems are often inadequate. Autonomous on-Demand Shuttles (AODS) hold a promising option for FMLM connections due to their cost-effectiveness and improved safety features, thereby enhancing user convenience and reducing reliance on personal vehicles. A critical issue in AODS service design is the optimization of travel paths, for which realistic traffic network assignment combined with optimal routing offers a viable solution. In this study, we have designed an AODS controller that integrates a mesoscopic simulation-based dynamic traffic assignment model with a greedy insertion heuristics approach to optimize the travel routes of the shuttles. The controller also considers the charging infrastructure/strategies and the impact of the shuttles on regular traffic flow for routes and fleet-size planning. The controller is implemented in Aimsun traffic simulator considering Lake Nona in Orlando, Florida as a case study. We show that, under the present demand based on 1% of total trips as transit riders, a fleet of 3 autonomous shuttles can serve about 80% of FMLM trip requests on-demand basis with an average waiting time below 4 minutes. Additional power sources have significant effect on service quality as the inactive waiting time for charging would increase the fleet size. We also show that low-speed autonomous shuttles would have negligible impact on regular vehicle flow, making them suitable for suburban areas. These findings have important implications for sustainable urban planning and public transit operations.