Abstract:The First-Mile Last-Mile (FMLM) connectivity is crucial for improving public transit accessibility and efficiency, particularly in sprawling suburban regions where traditional fixed-route transit systems are often inadequate. Autonomous on-Demand Shuttles (AODS) hold a promising option for FMLM connections due to their cost-effectiveness and improved safety features, thereby enhancing user convenience and reducing reliance on personal vehicles. A critical issue in AODS service design is the optimization of travel paths, for which realistic traffic network assignment combined with optimal routing offers a viable solution. In this study, we have designed an AODS controller that integrates a mesoscopic simulation-based dynamic traffic assignment model with a greedy insertion heuristics approach to optimize the travel routes of the shuttles. The controller also considers the charging infrastructure/strategies and the impact of the shuttles on regular traffic flow for routes and fleet-size planning. The controller is implemented in Aimsun traffic simulator considering Lake Nona in Orlando, Florida as a case study. We show that, under the present demand based on 1% of total trips as transit riders, a fleet of 3 autonomous shuttles can serve about 80% of FMLM trip requests on-demand basis with an average waiting time below 4 minutes. Additional power sources have significant effect on service quality as the inactive waiting time for charging would increase the fleet size. We also show that low-speed autonomous shuttles would have negligible impact on regular vehicle flow, making them suitable for suburban areas. These findings have important implications for sustainable urban planning and public transit operations.
Abstract:The use of Agent-Based and Activity-Based modeling in transportation is rising due to the capability of addressing complex applications such as disruptive trends (e.g., remote working and automation) or the design and assessment of disaggregated management strategies. Still, the broad adoption of large-scale disaggregate models is not materializing due to the inherently high complexity and computational needs. Activity-based models focused on behavioral theory, for example, may involve hundreds of parameters that need to be calibrated to match the detailed socio-economical characteristics of the population for any case study. This paper tackles this issue by proposing a novel Bayesian Optimization approach incorporating a surrogate model in the form of an improved Random Forest, designed to automate the calibration process of the behavioral parameters. The proposed method is tested on a case study for the city of Tallinn, Estonia, where the model to be calibrated consists of 477 behavioral parameters, using the SimMobility MT software. Satisfactory performance is achieved in the major indicators defined for the calibration process: the error for the overall number of trips is equal to 4% and the average error in the OD matrix is 15.92 vehicles per day.