Abstract:This research presents a comprehensive approach to predicting the duration of traffic incidents and classifying them as short-term or long-term across the Sydney Metropolitan Area. Leveraging a dataset that encompasses detailed records of traffic incidents, road network characteristics, and socio-economic indicators, we train and evaluate a variety of advanced machine learning models including Gradient Boosted Decision Trees (GBDT), Random Forest, LightGBM, and XGBoost. The models are assessed using Root Mean Square Error (RMSE) for regression tasks and F1 score for classification tasks. Our experimental results demonstrate that XGBoost and LightGBM outperform conventional models with XGBoost achieving the lowest RMSE of 33.7 for predicting incident duration and highest classification F1 score of 0.62 for a 30-minute duration threshold. For classification, the 30-minute threshold balances performance with 70.84\% short-term duration classification accuracy and 62.72\% long-term duration classification accuracy. Feature importance analysis, employing both tree split counts and SHAP values, identifies the number of affected lanes, traffic volume, and types of primary and secondary vehicles as the most influential features. The proposed methodology not only achieves high predictive accuracy but also provides stakeholders with vital insights into factors contributing to incident durations. These insights enable more informed decision-making for traffic management and response strategies. The code is available by the link: https://github.com/Future-Mobility-Lab/SydneyIncidents
Abstract:Physics-informed neural networks (PINNs) are a newly emerging research frontier in machine learning, which incorporate certain physical laws that govern a given data set, e.g., those described by partial differential equations (PDEs), into the training of the neural network (NN) based on such a data set. In PINNs, the NN acts as the solution approximator for the PDE while the PDE acts as the prior knowledge to guide the NN training, leading to the desired generalization performance of the NN when facing the limited availability of training data. However, training PINNs is a non-trivial task largely due to the complexity of the loss composed of both NN and physical law parts. In this work, we propose a new PINN training framework based on the multi-task optimization (MTO) paradigm. Under this framework, multiple auxiliary tasks are created and solved together with the given (main) task, where the useful knowledge from solving one task is transferred in an adaptive mode to assist in solving some other tasks, aiming to uplift the performance of solving the main task. We implement the proposed framework and apply it to train the PINN for addressing the traffic density prediction problem. Experimental results demonstrate that our proposed training framework leads to significant performance improvement in comparison to the traditional way of training the PINN.
Abstract:The study focuses on estimating and predicting time-varying origin to destination (OD) trip tables for a dynamic traffic assignment (DTA) model. A bi-level optimisation problem is formulated and solved to estimate OD flows from pre-existent demand matrix and historical traffic flow counts. The estimated demand is then considered as an input for a time series OD demand prediction model to support the DTA model for short-term traffic condition forecasting. Results show a high capability of the proposed OD demand estimation method to reduce the DTA model error through an iterative solution algorithm. Moreover, the applicability of the OD demand prediction approach is investigated for an incident analysis application for a major corridor in Sydney, Australia.