Abstract:Data from interconnected vehicles may contain sensitive information such as location, driving behavior, personal identifiers, etc. Without adequate safeguards, sharing this data jeopardizes data privacy and system security. The current centralized data-sharing paradigm in these systems raises particular concerns about data privacy. Recognizing these challenges, the shift towards decentralized interactions in technology, as echoed by the principles of Industry 5.0, becomes paramount. This work is closely aligned with these principles, emphasizing decentralized, human-centric, and secure technological interactions in an interconnected vehicular ecosystem. To embody this, we propose a practical approach that merges two emerging technologies: Federated Learning (FL) and Blockchain. The integration of these technologies enables the creation of a decentralized vehicular network. In this setting, vehicles can learn from each other without compromising privacy while also ensuring data integrity and accountability. Initial experiments show that compared to conventional decentralized federated learning techniques, our proposed approach significantly enhances the performance and security of vehicular networks. The system's accuracy stands at 91.92\%. While this may appear to be low in comparison to state-of-the-art federated learning models, our work is noteworthy because, unlike others, it was achieved in a malicious vehicle setting. Despite the challenging environment, our method maintains high accuracy, making it a competent solution for preserving data privacy in vehicular networks.
Abstract:BRAC University (BRACU) has participated in the University Rover Challenge (URC), a robotics competition for university level students organized by the Mars Society to design and build a rover that would be of use to early explorers on Mars. BRACU has designed and developed a full functional next-generation mars rover, Mongol Tori, which can be operated in the extreme, hostile condition expected in planet Mars. Not only has Mongol Tori embedded with both autonomous and manual controlled features to functionalize, it can also capable of conducting scientific tasks to identify the characteristics of soils and weathering in the mars environment.
Abstract:Contemporary patient surveillance systems have streamlined central surveillance into the electronic health record interface. They are able to process the sheer volume of patient data by adopting machine learning approaches. However, these systems are not suitable for implementation in many hospitals, mostly in developing countries, with limited human, financial, and technological resources. Through conducting thorough research on intensive care facilities, we designed a novel central patient monitoring system and in this paper, we describe the working prototype of our system. The proposed prototype comprises of inexpensive peripherals and simplistic user interface. Our central patient monitoring system implements Kernel-based On-line Anomaly Detection (KOAD) algorithm for emergency event signaling. By evaluating continuous patient data, we show that the system is able to detect critical events in real-time reliably and has low false alarm rate.