Abstract:Wind power as a renewable source of energy, has numerous economic, environmental and social benefits. In order to enhance and control renewable wind power, it is vital to utilize models that predict wind speed with high accuracy. Due to neglecting of requirement and significance of data preprocessing and disregarding the inadequacy of using a single predicting model, many traditional models have poor performance in wind speed prediction. In the current study, for predicting wind speed at target stations in the north of Iran, the combination of a multi-layer perceptron model (MLP) with the Whale Optimization Algorithm (WOA) used to build new method (MLP-WOA) with a limited set of data (2004-2014). Then, the MLP-WOA model was utilized at each of the ten target stations, with the nine stations for training and tenth station for testing (namely: Astara, Bandar-E-Anzali, Rasht, Manjil, Jirandeh, Talesh, Kiyashahr, Lahijan, Masuleh, and Deylaman) to increase the accuracy of the subsequent hybrid model. The capability of the hybrid model in wind speed forecasting at each target station was compared with the MLP model without the WOA optimizer. To determine definite results, numerous statistical performances were utilized. For all ten target stations, the MLP-WOA model had precise outcomes than the standalone MLP model. The hybrid model had acceptable performances with lower amounts of the RMSE, SI and RE parameters and higher values of NSE, WI, and KGE parameters. It was concluded that the WOA optimization algorithm can improve the prediction accuracy of MLP model and may be recommended for accurate wind speed prediction.
Abstract:Evaporation is one of the main processes in the hydrological cycle, and it is one of the most critical factors in agricultural, hydrological, and meteorological studies. Due to the interactions of multiple climatic factors, the evaporation is a complex and nonlinear phenomenon; therefore, the data-based methods can be used to have precise estimations of it. In this regard, in the present study, Gaussian Process Regression, Nearest-Neighbor, Random Forest and Support Vector Regression were used to estimate the pan evaporation in the meteorological stations of Golestan Province, Iran. For this purpose, meteorological data including PE, temperature, relative humidity, wind speed and sunny hours collected from the Gonbad-e Kavus, Gorgan and Bandar Torkman stations from 2011 through 2017. The accuracy of the studied methods was determined using the statistical indices of Root Mean Squared Error, correlation coefficient and Mean Absolute Error. Furthermore, the Taylor charts utilized for evaluating the accuracy of the mentioned models. We report that GPR for Gonbad-e Kavus Station with input parameters of T, W and S and GPR for Gorgan and Bandar Torkmen stations with input parameters of T, RH, W, and S had the most accurate performances and proposed for precise estimation of PE. Due to the high rate of evaporation in Iran and the lack of measurement instruments, the findings of the current study indicated that the PE values might be estimated with few easily measured meteorological parameters accurately.