Abstract:We describe the CoNLL-2000 shared task: dividing text into syntactically related non-overlapping groups of words, so-called text chunking. We give background information on the data sets, present a general overview of the systems that have taken part in the shared task and briefly discuss their performance.
Abstract:We present a memory-based learning (MBL) approach to shallow parsing in which POS tagging, chunking, and identification of syntactic relations are formulated as memory-based modules. The experiments reported in this paper show competitive results, the F-value for the Wall Street Journal (WSJ) treebank is: 93.8% for NP chunking, 94.7% for VP chunking, 77.1% for subject detection and 79.0% for object detection.
Abstract:In this paper we discuss cascaded Memory-Based grammatical relations assignment. In the first stages of the cascade, we find chunks of several types (NP,VP,ADJP,ADVP,PP) and label them with their adverbial function (e.g. local, temporal). In the last stage, we assign grammatical relations to pairs of chunks. We studied the effect of adding several levels to this cascaded classifier and we found that even the less performing chunkers enhanced the performance of the relation finder.