Abstract:Accurately representing the complex linkages and inherent uncertainties included in huge datasets is still a major difficulty in the field of data clustering. We address these issues with our proposed Unified Neutrosophic Clustering Algorithm (UNCA), which combines a multifaceted strategy with Neutrosophic logic to improve clustering performance. UNCA starts with a full-fledged similarity examination via a {\lambda}-cutting matrix that filters meaningful relationships between each two points of data. Then, we initialize centroids for Neutrosophic K-Means clustering, where the membership values are based on their degrees of truth, indeterminacy and falsity. The algorithm then integrates with a dynamic network visualization and MST (Minimum Spanning Tree) so that a visual interpretation of the relationships between the clusters can be clearly represented. UNCA employs SingleValued Neutrosophic Sets (SVNSs) to refine cluster assignments, and after fuzzifying similarity measures, guarantees a precise clustering result. The final step involves solidifying the clustering results through defuzzification methods, offering definitive cluster assignments. According to the performance evaluation results, UNCA outperforms conventional approaches in several metrics: it achieved a Silhouette Score of 0.89 on the Iris Dataset, a Davies-Bouldin Index of 0.59 on the Wine Dataset, an Adjusted Rand Index (ARI) of 0.76 on the Digits Dataset, and a Normalized Mutual Information (NMI) of 0.80 on the Customer Segmentation Dataset. These results demonstrate how UNCA enhances interpretability and resilience in addition to improving clustering accuracy when contrasted with Fuzzy C-Means (FCM), Neutrosophic C-Means (NCM), as well as Kernel Neutrosophic C-Means (KNCM). This makes UNCA a useful tool for complex data processing tasks
Abstract:Facial expression is a standout amongst the most imperative features of human emotion recognition. For demonstrating the emotional states facial expressions are utilized by the people. In any case, recognition of facial expressions has persisted a testing and intriguing issue with regards to PC vision. Recognizing the Micro-Facial expression in video sequence is the main objective of the proposed approach. For efficient recognition, the proposed method utilizes the optimal convolution neural network. Here the proposed method considering the input dataset is the CK+ dataset. At first, by means of Adaptive median filtering preprocessing is performed in the input image. From the preprocessed output, the extracted features are Geometric features, Histogram of Oriented Gradients features and Local binary pattern features. The novelty of the proposed method is, with the help of Modified Lion Optimization (MLO) algorithm, the optimal features are selected from the extracted features. In a shorter computational time, it has the benefits of rapidly focalizing and effectively acknowledging with the aim of getting an overall arrangement or idea. Finally, the recognition is done by Convolution Neural network (CNN). Then the performance of the proposed MFEOCNN method is analysed in terms of false measures and recognition accuracy. This kind of emotion recognition is mainly used in medicine, marketing, E-learning, entertainment, law and monitoring. From the simulation, we know that the proposed approach achieves maximum recognition accuracy of 99.2% with minimum Mean Absolute Error (MAE) value. These results are compared with the existing for MicroFacial Expression Based Deep-Rooted Learning (MFEDRL), Convolutional Neural Network with Lion Optimization (CNN+LO) and Convolutional Neural Network (CNN) without optimization. The simulation of the proposed method is done in the working platform of MATLAB.
Abstract:In this paper some of the different techniques used to localize the lips from the face are discussed and compared along with its processing steps. Lip localization is the basic step needed to read the lips for extracting visual information from the video input. The techniques could be applied on asymmetric lips and also on the mouth with visible teeth, tongue & mouth with moustache. In the process of Lip reading the following steps are generally used. They are, initially locating lips in the first frame of the video input, then tracking the lips in the following frames using the resulting pixel points of initial step and at last converting the tracked lip model to its corresponding matched letter to give the visual information. A new proposal is also initiated from the discussed techniques. The lip reading is useful in Automatic Speech Recognition when the audio is absent or present low with or without noise in the communication systems. Human Computer communication also will require speech recognition.
Abstract:Facial expressions are important cues to observe human emotions. Facial expression recognition has attracted many researchers for years, but it is still a challenging topic since expression features vary greatly with the head poses, environments, and variations in the different persons involved. In this work, three major steps are involved to improve the performance of micro-facial expression recognition. First, an Adaptive Homomorphic Filtering is used for face detection and rotation rectification processes. Secondly, Micro-facial features were used to extract the appearance variations of a testing image-spatial analysis. The features of motion information are used for expression recognition in a sequence of facial images. An effective Micro-Facial Expression Based Deep-Rooted Learning (MFEDRL) classifier is proposed in this paper to better recognize spontaneous micro-expressions by learning parameters on the optimal features. This proposed method includes two loss functions such as cross entropy loss function and centre loss function. Then the performance of the algorithm will be evaluated using recognition rate and false measures. Simulation results show that the predictive performance of the proposed method outperforms that of the existing classifiers such as Convolutional Neural Network (CNN), Deep Neural Network (DNN), Artificial Neural Network (ANN), Support Vector Machine (SVM), and k-Nearest Neighbours (KNN) in terms of accuracy and Mean Absolute Error (MAE).