Abstract:Several methods for discovering interpretable directions in the latent space of pre-trained GANs have been proposed. Latent semantics discovered by unsupervised methods are relatively less disentangled than supervised methods since they do not use pre-trained attribute classifiers. We propose Scale Ranking Estimator (SRE), which is trained using self-supervision. SRE enhances the disentanglement in directions obtained by existing unsupervised disentanglement techniques. These directions are updated to preserve the ordering of variation within each direction in latent space. Qualitative and quantitative evaluation of the discovered directions demonstrates that our proposed method significantly improves disentanglement in various datasets. We also show that the learned SRE can be used to perform Attribute-based image retrieval task without further training.
Abstract:The process of selecting points for training a machine learning model is often a challenging task. Many times, we will have a lot of data, but for training, we require the labels and labeling is often costly. So we need to select the points for training in an efficient manner so that the model trained on the points selected will be better than the ones trained on any other training set. We propose a novel method to select the nodes in graph datasets using the concept of graph centrality. Two methods are proposed - one using a smart selection strategy, where the model is required to be trained only once and another using active learning method. We have tested this idea on three popular graph datasets - Cora, Citeseer and Pubmed- and the results are found to be encouraging.