Abstract:Ionic polymer actuators, in essence, consist of ion exchange polymers sandwiched between layers of electrodes. They have recently gained recognition as promising candidates for soft actuators due to their lightweight nature, noise-free operation, and low-driving voltages. However, the materials traditionally utilized to develop them are often not human/environmentally friendly. Thus, to address this issue, researchers have been focusing on developing biocompatible versions of this actuator. Despite this, such actuators still face challenges in achieving high performance, in payload capacity, bending capabilities, and response time. In this paper, we present a biocompatible ionic polymer actuator whose membrane is fully 3D printed utilizing a direct ink writing method. The structure of the printed membranes consists of biodegradable ionic fluid encapsulated within layers of activated carbon polymers. From the microscopic observations of its structure, we confirmed that the ionic polymer is well encapsulated. The actuators can achieve a bending performance of up to 124$^\circ$ (curvature of 0.82 $\text{cm}^{-1}$), which, to our knowledge, is the highest curvature attained by any bending ionic polymer actuator to date. It can operate comfortably up to a 2 Hz driving frequency and can achieve blocked forces of up to 0.76 mN. Our results showcase a promising, high-performing biocompatible ionic polymer actuator, whose membrane can be easily manufactured in a single step using a standard FDM 3D printer. This approach paves the way for creating customized designs for functional soft robotic applications, including human-interactive devices, in the near future.
Abstract:One of the trendsetting themes in soft robotics has been the goal of developing the ultimate universal soft robotic gripper. One that is capable of manipulating items of various shapes, sizes, thicknesses, textures, and weights. All the while still being lightweight and scalable in order to adapt to use cases. In this work, we report a soft gripper that enables delicate and precise grasps of fragile, deformable, and flexible objects but also excels in lifting heavy objects of up to 1617x its own body weight. The principle behind the soft gripper is based on extending the capabilities of electroadhesion soft grippers through the enhancement principles found in metamaterial adhesion cut and patterning. This design amplifies the adhesion and grasping payload in one direction while reducing the adhesion capabilities in the other direction. This counteracts the residual forces during peeling (a common problem with electroadhesive grippers), thus increasing its speed of release. In essence, we are able to tune the maximum strength and peeling speed, beyond the capabilities of previous electroadhesive grippers. We study the capabilities of the system through a wide range of experiments with single and multiple-fingered peel tests. We also demonstrate its modular and adaptive capabilities in the real-world with a two-finger gripper, by performing grasping tests of up to $5$ different multi-surfaced objects.