Abstract:Ionic polymer actuators, in essence, consist of ion exchange polymers sandwiched between layers of electrodes. They have recently gained recognition as promising candidates for soft actuators due to their lightweight nature, noise-free operation, and low-driving voltages. However, the materials traditionally utilized to develop them are often not human/environmentally friendly. Thus, to address this issue, researchers have been focusing on developing biocompatible versions of this actuator. Despite this, such actuators still face challenges in achieving high performance, in payload capacity, bending capabilities, and response time. In this paper, we present a biocompatible ionic polymer actuator whose membrane is fully 3D printed utilizing a direct ink writing method. The structure of the printed membranes consists of biodegradable ionic fluid encapsulated within layers of activated carbon polymers. From the microscopic observations of its structure, we confirmed that the ionic polymer is well encapsulated. The actuators can achieve a bending performance of up to 124$^\circ$ (curvature of 0.82 $\text{cm}^{-1}$), which, to our knowledge, is the highest curvature attained by any bending ionic polymer actuator to date. It can operate comfortably up to a 2 Hz driving frequency and can achieve blocked forces of up to 0.76 mN. Our results showcase a promising, high-performing biocompatible ionic polymer actuator, whose membrane can be easily manufactured in a single step using a standard FDM 3D printer. This approach paves the way for creating customized designs for functional soft robotic applications, including human-interactive devices, in the near future.
Abstract:There are various desired capabilities to create aerial forest-traversing robots capable of monitoring both biological and abiotic data. The features range from multi-functionality, robustness, and adaptability. These robots have to weather turbulent winds and various obstacles such as forest flora and wildlife thus amplifying the complexity of operating in such uncertain environments. The key for successful data collection is the flexibility to intermittently move from tree-to-tree, in order to perch at vantage locations for elongated time. This effort to perch not only reduces the disturbance caused by multi-rotor systems during data collection, but also allows the system to rest and recharge for longer outdoor missions. Current systems feature the addition of perching modules that increase the aerial robots' weight and reduce the drone's overall endurance. Thus in our work, the key questions currently studied are: "How do we develop a single robot capable of metamorphosing its body for multi-modal flight and dynamic perching?", "How do we detect and land on perchable objects robustly and dynamically?", and "What important spatial-temporal data is important for us to collect?"