Abstract:$\textbf{Background:}$ At the onset of a pandemic, such as COVID-19, data with proper labeling/attributes corresponding to the new disease might be unavailable or sparse. Machine Learning (ML) models trained with the available data, which is limited in quantity and poor in diversity, will often be biased and inaccurate. At the same time, ML algorithms designed to fight pandemics must have good performance and be developed in a time-sensitive manner. To tackle the challenges of limited data, and label scarcity in the available data, we propose generating conditional synthetic data, to be used alongside real data for developing robust ML models. $\textbf{Methods:}$ We present a hybrid model consisting of a conditional generative flow and a classifier for conditional synthetic data generation. The classifier decouples the feature representation for the condition, which is fed to the flow to extract the local noise. We generate synthetic data by manipulating the local noise with fixed conditional feature representation. We also propose a semi-supervised approach to generate synthetic samples in the absence of labels for a majority of the available data. $\textbf{Results:}$ We performed conditional synthetic generation for chest computed tomography (CT) scans corresponding to normal, COVID-19, and pneumonia afflicted patients. We show that our method significantly outperforms existing models both on qualitative and quantitative performance, and our semi-supervised approach can efficiently synthesize conditional samples under label scarcity. As an example of downstream use of synthetic data, we show improvement in COVID-19 detection from CT scans with conditional synthetic data augmentation.
Abstract:How to generate conditional synthetic data for a domain without utilizing information about its labels/attributes? Our work presents a solution to the above question. We propose a transfer learning-based framework utilizing normalizing flows, coupled with both maximum-likelihood and adversarial training. We model a source domain (labels available) and a target domain (labels unavailable) with individual normalizing flows, and perform domain alignment to a common latent space using adversarial discriminators. Due to the invertible property of flow models, the mapping has exact cycle consistency. We also learn the joint distribution of the data samples and attributes in the source domain by employing an encoder to map attributes to the latent space via adversarial training. During the synthesis phase, given any combination of attributes, our method can generate synthetic samples conditioned on them in the target domain. Empirical studies confirm the effectiveness of our method on benchmarked datasets. We envision our method to be particularly useful for synthetic data generation in label-scarce systems by generating non-trivial augmentations via attribute transformations. These synthetic samples will introduce more entropy into the label-scarce domain than their geometric and photometric transformation counterparts, helpful for robust downstream tasks.