Abstract:Current performance evaluation for audio source separation depends on comparing the processed or separated signals with reference signals. Therefore, common performance evaluation toolkits are not applicable to real-world situations where the ground truth audio is unavailable. In this paper, we propose a performance evaluation technique that does not require reference signals in order to assess separation quality. The proposed technique uses a deep neural network (DNN) to map the processed audio into its quality score. Our experiment results show that the DNN is capable of predicting the sources-to-artifacts ratio from the blind source separation evaluation toolkit without the need for reference signals.