Abstract:The dissemination of scholarly research is critical, yet researchers often lack the time and skills to create engaging content for popular media such as short-form videos. To address this gap, we explore the use of generative AI to help researchers transform their academic papers into accessible video content. Informed by a formative study with science communicators and content creators (N=8), we designed PaperTok, an end-to-end system that automates the initial creative labor by generating script options and corresponding audiovisual content from a source paper. Researchers can then refine based on their preferences with further prompting. A mixed-methods user study (N=18) and crowdsourced evaluation (N=100) demonstrate that PaperTok's workflow can help researchers create engaging and informative short-form videos. We also identified the need for more fine-grained controls in the creation process. To this end, we offer implications for future generative tools that support science outreach.
Abstract:Data-driven scientific discovery requires the iterative integration of scientific domain knowledge, statistical expertise, and an understanding of data semantics to make nuanced analytical decisions, e.g., about which variables, transformations, and statistical models to consider. LM-based agents equipped with planning, memory, and code execution capabilities have the potential to support data-driven science. However, evaluating agents on such open-ended tasks is challenging due to multiple valid approaches, partially correct steps, and different ways to express the same decisions. To address these challenges, we present BLADE, a benchmark to automatically evaluate agents' multifaceted approaches to open-ended research questions. BLADE consists of 12 datasets and research questions drawn from existing scientific literature, with ground truth collected from independent analyses by expert data scientists and researchers. To automatically evaluate agent responses, we developed corresponding computational methods to match different representations of analyses to this ground truth. Though language models possess considerable world knowledge, our evaluation shows that they are often limited to basic analyses. However, agents capable of interacting with the underlying data demonstrate improved, but still non-optimal, diversity in their analytical decision making. Our work enables the evaluation of agents for data-driven science and provides researchers deeper insights into agents' analysis approaches.