Abstract:Reconstructing 3D shapes from a single image plays an important role in computer vision. Many methods have been proposed and achieve impressive performance. However, existing methods mainly focus on extracting semantic information from images and then simply concatenating it with 3D point clouds without further exploring the concatenated semantics. As a result, these entangled semantic features significantly hinder the reconstruction performance. In this paper, we propose a novel single-image 3D reconstruction method called Mining Effective Semantic Cues for 3D Reconstruction from a Single Image (MESC-3D), which can actively mine effective semantic cues from entangled features. Specifically, we design an Effective Semantic Mining Module to establish connections between point clouds and image semantic attributes, enabling the point clouds to autonomously select the necessary information. Furthermore, to address the potential insufficiencies in semantic information from a single image, such as occlusions, inspired by the human ability to represent 3D objects using prior knowledge drawn from daily experiences, we introduce a 3D Semantic Prior Learning Module. This module incorporates semantic understanding of spatial structures, enabling the model to interpret and reconstruct 3D objects with greater accuracy and realism, closely mirroring human perception of complex 3D environments. Extensive evaluations show that our method achieves significant improvements in reconstruction quality and robustness compared to prior works. Additionally, further experiments validate the strong generalization capabilities and excels in zero-shot preformance on unseen classes. Code is available at https://github.com/QINGQINGLE/MESC-3D.
Abstract:Guided depth super-resolution (GDSR) has demonstrated impressive performance across a wide range of domains, with numerous methods being proposed. However, existing methods often treat depth maps as images, where shading values are computed discretely, making them struggle to effectively restore the continuity inherent in the depth map. In this paper, we propose a novel approach that maximizes the utilization of spatial characteristics in depth, coupled with human abstract perception of real-world substance, by transforming the GDSR issue into deformation of a roughcast with ideal plasticity, which can be deformed by force like a continuous object. Specifically, we firstly designed a cross-modal operation, Continuity-constrained Asymmetrical Pixelwise Operation (CAPO), which can mimic the process of deforming an isovolumetrically flexible object through external forces. Utilizing CAPO as the fundamental component, we develop the Pixelwise Cross Gradient Deformation (PCGD), which is capable of emulating operations on ideal plastic objects (without volume constraint). Notably, our approach demonstrates state-of-the-art performance across four widely adopted benchmarks for GDSR, with significant advantages in large-scale tasks and generalizability.