Abstract:The emerging field of smart agriculture leverages the Internet of Things (IoT) to revolutionize farming practices. This paper investigates the transformative potential of Long Range (LoRa) technology as a key enabler of long-range wireless communication for agricultural IoT systems. By reviewing existing literature, we identify a gap in research specifically focused on LoRa's prospects and challenges from a communication perspective in smart agriculture. We delve into the details of LoRa-based agricultural networks, covering network architecture design, Physical Layer (PHY) considerations tailored to the agricultural environment, and channel modeling techniques that account for soil characteristics. The paper further explores relaying and routing mechanisms that address the challenges of extending network coverage and optimizing data transmission in vast agricultural landscapes. Transitioning to practical aspects, we discuss sensor deployment strategies and energy management techniques, offering insights for real-world deployments. A comparative analysis of LoRa with other wireless communication technologies employed in agricultural IoT applications highlights its strengths and weaknesses in this context. Furthermore, the paper outlines several future research directions to leverage the potential of LoRa-based agriculture 4.0. These include advancements in channel modeling for diverse farming environments, novel relay routing algorithms, integrating emerging sensor technologies like hyper-spectral imaging and drone-based sensing, on-device Artificial Intelligence (AI) models, and sustainable solutions. This survey can guide researchers, technologists, and practitioners to understand, implement, and propel smart agriculture initiatives using LoRa technology.
Abstract:Beyond Line of Sight (BLOS) communication stands as an indispensable element within defense communication strategies, facilitating information exchange in scenarios where traditional Line of Sight (LOS) methodologies encounter obstruction. This article delves into the forefront of technologies driving BLOS communication, emphasizing advanced systems like phantom networks, nanonetworks, aerial relays, and satellite-based defense communication. Moreover, we present a practical use case of UAV path planning using optimization techniques amidst radar-threat war zones that add concrete relevance, underscoring the tangible applications of BLOS defense communication systems. Additionally, we present several future research directions for BLOS communication in defense systems, such as resilience enhancement, the integration of heterogeneous networks, management of contested spectrums, advancements in multimedia communication, adaptive methodologies, and the burgeoning domain of the Internet of Military Things (IoMT). This exploration of BLOS technologies and their applications lays the groundwork for synergistic collaboration between industry and academia, fostering innovation in defense communication paradigms.
Abstract:Localization of sensor nodes in the Internet of Underwater Things (IoUT) is of considerable significance due to its various applications, such as navigation, data tagging, and detection of underwater objects. Therefore, in this paper, we propose a hybrid Bayesian multidimensional scaling (BMDS) based localization technique that can work on a fully hybrid IoUT network where the nodes can communicate using either optical, magnetic induction, and acoustic technologies. These technologies are already used for communication in the underwater environment; however, lacking localization solutions. Optical and magnetic induction communication achieves higher data rates for short communication. On the contrary, acoustic waves provide a low data rate for long-range underwater communication. The proposed method collectively uses optical, magnetic induction, and acoustic communication-based ranging to estimate the underwater sensor nodes' final locations. Moreover, we also analyze the proposed scheme by deriving the hybrid Cramer Rao lower bound (HCRLB). Simulation results provide a complete comparative analysis of the proposed method with the literature.