Abstract:This paper presents a probabilistic approach to represent and quantify model-form uncertainties in the reduced-order modeling of complex systems using operator inference techniques. Such uncertainties can arise in the selection of an appropriate state-space representation, in the projection step that underlies many reduced-order modeling methods, or as a byproduct of considerations made during training, to name a few. Following previous works in the literature, the proposed method captures these uncertainties by expanding the approximation space through the randomization of the projection matrix. This is achieved by combining Riemannian projection and retraction operators - acting on a subset of the Stiefel manifold - with an information-theoretic formulation. The efficacy of the approach is assessed on canonical problems in fluid mechanics by identifying and quantifying the impact of model-form uncertainties on the inferred operators.
Abstract:This work presents two novel approaches for the symplectic model reduction of high-dimensional Hamiltonian systems using data-driven quadratic manifolds. Classical symplectic model reduction approaches employ linear symplectic subspaces for representing the high-dimensional system states in a reduced-dimensional coordinate system. While these approximations respect the symplectic nature of Hamiltonian systems, the linearity of the approximation imposes a fundamental limitation to the accuracy that can be achieved. We propose two different model reduction methods based on recently developed quadratic manifolds, each presenting its own advantages and limitations. The addition of quadratic terms in the state approximation, which sits at the heart of the proposed methodologies, enables us to better represent intrinsic low-dimensionality in the problem at hand. Both approaches are effective for issuing predictions in settings well outside the range of their training data while providing more accurate solutions than the linear symplectic reduced-order models.