Abstract:Networks have provided extremely successful models of data and complex systems. Yet, as combinatorial objects, networks do not have in general intrinsic coordinates and do not typically lie in an ambient space. The process of assigning an embedding space to a network has attracted lots of interest in the past few decades, and has been efficiently applied to fundamental problems in network inference, such as link prediction, node classification, and community detection. In this review, we provide a user-friendly guide to the network embedding literature and current trends in this field which will allow the reader to navigate through the complex landscape of methods and approaches emerging from the vibrant research activity on these subjects.
Abstract:Kleinberg introduced three natural clustering properties, or axioms, and showed they cannot be simultaneously satisfied by any clustering algorithm. We present a new clustering property, Monotonic Consistency, which avoids the well-known problematic behaviour of Kleinberg's Consistency axiom, and the impossibility result. Namely, we describe a clustering algorithm, Morse Clustering, inspired by Morse Theory in Differential Topology, which satisfies Kleinberg's original axioms with Consistency replaced by Monotonic Consistency. Morse clustering uncovers the underlying flow structure on a set or graph and returns a partition into trees representing basins of attraction of critical vertices. We also generalise Kleinberg's axiomatic approach to sparse graphs, showing an impossibility result for Consistency, and a possibility result for Monotonic Consistency and Morse clustering.