University of Bari Aldo Moro
Abstract:The integration of Artificial Intelligence (AI) in modern society is heavily shifting the way that individuals carry out their tasks and activities. Employing AI-based systems raises challenges that designers and developers must address to ensure that humans remain in control of the interaction process, particularly in high-risk domains. This article presents a novel End-User Development (EUD) approach for black-box AI models through a redesigned user interface in the Rhino-Cyt platform, a medical AI-based decision-support system for medical professionals (more precisely, rhinocytologists) to carry out cell classification. The proposed interface empowers users to intervene in AI decision-making process by editing explanations and reconfiguring the model, influencing its future predictions. This work contributes to Human-Centered AI (HCAI) and EUD by discussing how explanation-driven interventions allow a blend of explainability, user intervention, and model reconfiguration, fostering a symbiosis between humans and user-tailored AI systems.
Abstract:Artificial Intelligence (AI) spreads quickly as new technologies and services take over modern society. The need to regulate AI design, development, and use is strictly necessary to avoid unethical and potentially dangerous consequences to humans. The European Union (EU) has released a new legal framework, the AI Act, to regulate AI by undertaking a risk-based approach to safeguard humans during interaction. At the same time, researchers offer a new perspective on AI systems, commonly known as Human-Centred AI (HCAI), highlighting the need for a human-centred approach to their design. In this context, Symbiotic AI (a subtype of HCAI) promises to enhance human capabilities through a deeper and continuous collaboration between human intelligence and AI. This article presents the results of a Systematic Literature Review (SLR) that aims to identify principles that characterise the design and development of Symbiotic AI systems while considering humans as the core of the process. Through content analysis, four principles emerged from the review that must be applied to create Human-Centred AI systems that can establish a symbiotic relationship with humans. In addition, current trends and challenges were defined to indicate open questions that may guide future research for the development of SAI systems that comply with the AI Act.
Abstract:Artificial Intelligence algorithms have now become pervasive in multiple high-stakes domains. However, their internal logic can be obscure to humans. Explainable Artificial Intelligence aims to design tools and techniques to illustrate the predictions of the so-called black-box algorithms. The Human-Computer Interaction community has long stressed the need for a more user-centered approach to Explainable AI. This approach can benefit from research in user interface, user experience, and visual analytics. This paper proposes a visual-based method to illustrate rules paired with feature importance. A user study with 15 participants was conducted comparing our visual method with the original output of the algorithm and textual representation to test its effectiveness with users.
Abstract:In recent years, Artificial Intelligence has become more and more relevant in our society. Creating AI systems is almost always the prerogative of IT and AI experts. However, users may need to create intelligent solutions tailored to their specific needs. In this way, AI systems can be enhanced if new approaches are devised to allow non-technical users to be directly involved in the definition and personalization of AI technologies. End-User Development (EUD) can provide a solution to these problems, allowing people to create, customize, or adapt AI-based systems to their own needs. This paper presents a systematic literature review that aims to shed the light on the current landscape of EUD for AI systems, i.e., how users, even without skills in AI and/or programming, can customize the AI behavior to their needs. This study also discusses the current challenges of EUD for AI, the potential benefits, and the future implications of integrating EUD into the overall AI development process.