Abstract:Artificial Intelligence algorithms have now become pervasive in multiple high-stakes domains. However, their internal logic can be obscure to humans. Explainable Artificial Intelligence aims to design tools and techniques to illustrate the predictions of the so-called black-box algorithms. The Human-Computer Interaction community has long stressed the need for a more user-centered approach to Explainable AI. This approach can benefit from research in user interface, user experience, and visual analytics. This paper proposes a visual-based method to illustrate rules paired with feature importance. A user study with 15 participants was conducted comparing our visual method with the original output of the algorithm and textual representation to test its effectiveness with users.
Abstract:In recent years, Artificial Intelligence has become more and more relevant in our society. Creating AI systems is almost always the prerogative of IT and AI experts. However, users may need to create intelligent solutions tailored to their specific needs. In this way, AI systems can be enhanced if new approaches are devised to allow non-technical users to be directly involved in the definition and personalization of AI technologies. End-User Development (EUD) can provide a solution to these problems, allowing people to create, customize, or adapt AI-based systems to their own needs. This paper presents a systematic literature review that aims to shed the light on the current landscape of EUD for AI systems, i.e., how users, even without skills in AI and/or programming, can customize the AI behavior to their needs. This study also discusses the current challenges of EUD for AI, the potential benefits, and the future implications of integrating EUD into the overall AI development process.