Abstract:Tumors can manifest in various forms and in different areas of the human body. Brain tumors are specifically hard to diagnose and treat because of the complexity of the organ in which they develop. Detecting them in time can lower the chances of death and facilitate the therapy process for patients. The use of Artificial Intelligence (AI) and, more specifically, deep learning, has the potential to significantly reduce costs in terms of time and resources for the discovery and identification of tumors from images obtained through imaging techniques. This research work aims to assess the performance of a multimodal model for the classification of Magnetic Resonance Imaging (MRI) scans processed as grayscale images. The results are promising, and in line with similar works, as the model reaches an accuracy of around 98\%. We also highlight the need for explainability and transparency to ensure human control and safety.
Abstract:In recent years, Artificial Intelligence has become more and more relevant in our society. Creating AI systems is almost always the prerogative of IT and AI experts. However, users may need to create intelligent solutions tailored to their specific needs. In this way, AI systems can be enhanced if new approaches are devised to allow non-technical users to be directly involved in the definition and personalization of AI technologies. End-User Development (EUD) can provide a solution to these problems, allowing people to create, customize, or adapt AI-based systems to their own needs. This paper presents a systematic literature review that aims to shed the light on the current landscape of EUD for AI systems, i.e., how users, even without skills in AI and/or programming, can customize the AI behavior to their needs. This study also discusses the current challenges of EUD for AI, the potential benefits, and the future implications of integrating EUD into the overall AI development process.