Abstract:The Alzheimer's Disease Analysis Model Generation 1 (ADAM) is a multi-agent large language model (LLM) framework designed to integrate and analyze multi-modal data, including microbiome profiles, clinical datasets, and external knowledge bases, to enhance the understanding and detection of Alzheimer's disease (AD). By leveraging retrieval-augmented generation (RAG) techniques along with its multi-agent architecture, ADAM-1 synthesizes insights from diverse data sources and contextualizes findings using literature-driven evidence. Comparative evaluation against XGBoost revealed similar mean F1 scores but significantly reduced variance for ADAM-1, highlighting its robustness and consistency, particularly in small laboratory datasets. While currently tailored for binary classification tasks, future iterations aim to incorporate additional data modalities, such as neuroimaging and biomarkers, to broaden the scalability and applicability for Alzheimer's research and diagnostics.
Abstract:This study examined the viability of enhancing the prediction accuracy of artificial neural networks (ANNs) in image classification tasks by developing ANNs with evolution patterns similar to those of biological neural networks. ResNet is a widely used family of neural networks with both deep and wide variants; therefore, it was selected as the base model for our investigation. The aim of this study is to improve the image classification performance of ANNs via a novel approach inspired by the biological nervous system architecture of planarians, which comprises a brain and two nerve cords. We believe that the unique neural architecture of planarians offers valuable insights into the performance enhancement of ANNs. The proposed planarian neural architecture-based neural network was evaluated on the CIFAR-10 and CIFAR-100 datasets. Our results indicate that the proposed method exhibits higher prediction accuracy than the baseline neural network models in image classification tasks. These findings demonstrate the significant potential of biologically inspired neural network architectures in improving the performance of ANNs in a wide range of applications.