Abstract:With the rapid development of online social networks and the inadequacies in content moderation mechanisms, the detection of fake news has emerged as a pressing concern for the public. Various methods have been proposed for fake news detection, including text-based approaches as well as a series of graph-based approaches. However, the deceptive nature of fake news renders text-based approaches less effective. Propagation tree-based methods focus on the propagation process of individual news, capturing pairwise relationships but lacking the capability to capture high-order complex relationships. Large heterogeneous graph-based approaches necessitate the incorporation of substantial additional information beyond news text and user data, while hypergraph-based approaches rely on predefined hypergraph structures. To tackle these issues, we propose a novel dynamic hypergraph-based multi-view fake news detection model (DHy-MFND) that learns news embeddings across three distinct views: text-level, propagation tree-level, and hypergraph-level. By employing hypergraph structures to model complex high-order relationships among multiple news pieces and introducing dynamic hypergraph structure learning, we optimize predefined hypergraph structures while learning news embeddings. Additionally, we introduce contrastive learning to capture authenticity-relevant embeddings across different views. Extensive experiments on two benchmark datasets demonstrate the effectiveness of our proposed DHy-MFND compared with a broad range of competing baselines.
Abstract:Hypergraphs provide an effective modeling approach for modeling high-order relationships in many real-world datasets. To capture such complex relationships, several hypergraph neural networks have been proposed for learning hypergraph structure, which propagate information from nodes to hyperedges and then from hyperedges back to nodes. However, most existing methods focus on information propagation between hyperedges and nodes, neglecting the interactions among hyperedges themselves. In this paper, we propose HeIHNN, a hyperedge interaction-aware hypergraph neural network, which captures the interactions among hyperedges during the convolution process and introduce a novel mechanism to enhance information flow between hyperedges and nodes. Specifically, HeIHNN integrates the interactions between hyperedges into the hypergraph convolution by constructing a three-stage information propagation process. After propagating information from nodes to hyperedges, we introduce a hyperedge-level convolution to update the hyperedge embeddings. Finally, the embeddings that capture rich information from the interaction among hyperedges will be utilized to update the node embeddings. Additionally, we introduce a hyperedge outlier removal mechanism in the information propagation stages between nodes and hyperedges, which dynamically adjusts the hypergraph structure using the learned embeddings, effectively removing outliers. Extensive experiments conducted on real-world datasets show the competitive performance of HeIHNN compared with state-of-the-art methods.