Abstract:International AI governance agreements and institutions may play an important role in reducing global security risks from advanced AI. To inform the design of such agreements and institutions, we conducted case studies of historical and contemporary international security agreements. We focused specifically on those arrangements around dual-use technologies, examining agreements in nuclear security, chemical weapons, biosecurity, and export controls. For each agreement, we examined four key areas: (a) purpose, (b) core powers, (c) governance structure, and (d) instances of non-compliance. From these case studies, we extracted lessons for the design of international AI agreements and governance institutions. We discuss the importance of robust verification methods, strategies for balancing power between nations, mechanisms for adapting to rapid technological change, approaches to managing trade-offs between transparency and security, incentives for participation, and effective enforcement mechanisms.
Abstract:Large language models have demonstrated remarkable few-shot performance on many natural language understanding tasks. Despite several demonstrations of using large language models in complex, strategic scenarios, there lacks a comprehensive framework for evaluating agents' performance across various types of reasoning found in games. To address this gap, we introduce GameBench, a cross-domain benchmark for evaluating strategic reasoning abilities of LLM agents. We focus on 9 different game environments, where each covers at least one axis of key reasoning skill identified in strategy games, and select games for which strategy explanations are unlikely to form a significant portion of models' pretraining corpuses. Our evaluations use GPT-3 and GPT-4 in their base form along with two scaffolding frameworks designed to enhance strategic reasoning ability: Chain-of-Thought (CoT) prompting and Reasoning Via Planning (RAP). Our results show that none of the tested models match human performance, and at worse GPT-4 performs worse than random action. CoT and RAP both improve scores but not comparable to human levels.