Abstract:Conventional pedestrian simulators are inevitable tools in the design process of a building, as they enable project engineers to prevent overcrowding situations and plan escape routes for evacuation. However, simulation runtime and the multiple cumbersome steps in generating simulation results are potential bottlenecks during the building design process. Data-driven approaches have demonstrated their capability to outperform conventional methods in speed while delivering similar or even better results across many disciplines. In this work, we present a deep learning-based approach based on a Vision Transformer to predict density heatmaps over time and total evacuation time from a given floorplan. Specifically, due to limited availability of public datasets, we implement a parametric data generation pipeline including a conventional simulator. This enables us to build a large synthetic dataset that we use to train our architecture. Furthermore, we seamlessly integrate our model into a BIM-authoring tool to generate simulation results instantly and automatically.
Abstract:In the event of a disaster, saving human lives is of utmost importance. For developing proper evacuation procedures and guidance systems, behavioural data on how people respond during panic and stress is crucial. In the absence of real human data on building evacuation, there is a need for a crowd simulator to model egress and decision-making under uncertainty. In this paper, we propose an agent-based simulation tool, which is grounded in human cognition and decision-making, for evaluating and improving the effectiveness of building evacuation procedures and guidance systems during a disaster. Specifically, we propose a predictive agent-wayfinding framework based on information theory that is applied at intersections with variable route choices where it fuses N dynamic information sources. The proposed framework can be used to visualize trajectories and prediction results (i.e., total evacuation time, number of people evacuated) for different combinations of reinforcing or contradicting information sources (i.e., signage, crowd flow, familiarity, and spatial layout). This tool can enable designers to recreate various disaster scenarios and generate simulation data for improving the evacuation procedures and existing guidance systems.