Abstract:In this work, a new hybrid predictive Reduced Order Model (ROM) is proposed to solve reacting flow problems. This algorithm is based on a dimensionality reduction using Proper Orthogonal Decomposition (POD) combined with deep learning architectures. The number of degrees of freedom is reduced from thousands of temporal points to a few POD modes with their corresponding temporal coefficients. Two different deep learning architectures have been tested to predict the temporal coefficients, based on recursive (RNN) and convolutional (CNN) neural networks. From each architecture, different models have been created to understand the behavior of each parameter of the neural network. Results show that these architectures are able to predict the temporal coefficients of the POD modes, as well as the whole snapshots. The RNN shows lower prediction error for all the variables analyzed. The model was also found capable of predicting more complex simulations showing transfer learning capabilities.
Abstract:Accurate determination of fuel properties of complex mixtures over a wide range of pressure and temperature conditions is essential to utilizing alternative fuels. The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels. Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach. Here, Gaussian Process (GP) and probabilistic generative models are adopted. GP is a popular non-parametric Bayesian approach to build surrogate models mainly due to its capacity to handle the aleatory and epistemic uncertainties. Generative models have shown the ability of deep neural networks employed with the same intent. In this work, ML analysis is focused on a particular property, the fuel density, but it can also be extended to other physicochemical properties. This study explores the versatility of the ML models to handle multi-fidelity data. The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.