Abstract:One of the critical factors that drive the economic development of a country and guarantee the sustainability of its industries is the constant availability of electricity. This is usually provided by the national electric grid. However, in developing countries where companies are emerging on a constant basis including telecommunication industries, those are still experiencing a non-stable electricity supply. Therefore, they have to rely on generators to guarantee their full functionality. Those generators depend on fuel to function and the rate of consumption gets usually high, if not monitored properly. Monitoring operation is usually carried out by a (non-expert) human. In some cases, this could be a tedious process, as some companies have reported an exaggerated high consumption rate. This work proposes a label assisted autoencoder for anomaly detection in the fuel consumed by power generating plants. In addition to the autoencoder model, we added a labelling assistance module that checks if an observation is labelled, the label is used to check the veracity of the corresponding anomaly classification given a threshold. A consensus is then reached on whether training should stop or whether the threshold should be updated or the training should continue with the search for hyper-parameters. Results show that the proposed model is highly efficient for reading anomalies with a detection accuracy of $97.20\%$ which outperforms the existing model of $96.1\%$ accuracy trained on the same dataset. In addition, the proposed model is able to classify the anomalies according to their degree of severity.
Abstract:The instability of power generation from national grids has led industries (e.g., telecommunication) to rely on plant generators to run their businesses. However, these secondary generators create additional challenges such as fuel leakages in and out of the system and perturbations in the fuel level gauges. Consequently, telecommunication operators have been involved in a constant need for fuel to supply diesel generators. With the increase in fuel prices due to socio-economic factors, excessive fuel consumption and fuel pilferage become a problem, and this affects the smooth run of the network companies. In this work, we compared four machine learning algorithms (i.e. Gradient Boosting, Random Forest, Neural Network, and Lasso) to predict the amount of fuel consumed by a power generation plant. After evaluating the predictive accuracy of these models, the Gradient Boosting model out-perform the other three regressor models with the highest Nash efficiency value of 99.1%.