Abstract:By utilizing recently developed tools for constructing gradient flows on Wasserstein spaces, we extend an analysis technique commonly employed to understand alternating minimization algorithms on Euclidean space to the Expectation Maximization (EM) algorithm via its representation as coordinate-wise minimization on the product of a Euclidean space and a space of probability distributions due to Neal and Hinton (1998). In so doing we obtain finite sample error bounds and exponential convergence of the EM algorithm under a natural generalisation of a log-Sobolev inequality. We further demonstrate that the analysis technique is sufficiently flexible to allow also the analysis of several variants of the EM algorithm.
Abstract:We prove non-asymptotic error bounds for particle gradient descent (PGD)~(Kuntz et al., 2023), a recently introduced algorithm for maximum likelihood estimation of large latent variable models obtained by discretizing a gradient flow of the free energy. We begin by showing that, for models satisfying a condition generalizing both the log-Sobolev and the Polyak--{\L}ojasiewicz inequalities (LSI and P{\L}I, respectively), the flow converges exponentially fast to the set of minimizers of the free energy. We achieve this by extending a result well-known in the optimal transport literature (that the LSI implies the Talagrand inequality) and its counterpart in the optimization literature (that the P{\L}I implies the so-called quadratic growth condition), and applying it to our new setting. We also generalize the Bakry--\'Emery Theorem and show that the LSI/P{\L}I generalization holds for models with strongly concave log-likelihoods. For such models, we further control PGD's discretization error, obtaining non-asymptotic error bounds. While we are motivated by the study of PGD, we believe that the inequalities and results we extend may be of independent interest.