Abstract:In unsupervised representation learning, models aim to distill essential features from high-dimensional data into lower-dimensional learned representations, guided by inductive biases. Understanding the characteristics that make a good representation remains a topic of ongoing research. Disentanglement of independent generative processes has long been credited with producing high-quality representations. However, focusing solely on representations that adhere to the stringent requirements of most disentanglement metrics, may result in overlooking many high-quality representations, well suited for various downstream tasks. These metrics often demand that generative factors be encoded in distinct, single dimensions aligned with the canonical basis of the representation space. Motivated by these observations, we propose two novel metrics: Importance-Weighted Orthogonality (IWO) and Importance-Weighted Rank (IWR). These metrics evaluate the mutual orthogonality and rank of generative factor subspaces. Throughout extensive experiments on common downstream tasks, over several benchmark datasets and models, IWO and IWR consistently show stronger correlations with downstream task performance than traditional disentanglement metrics. Our findings suggest that representation quality is closer related to the orthogonality of independent generative processes rather than their disentanglement, offering a new direction for evaluating and improving unsupervised learning models.
Abstract:Federated learning is a recent advance in privacy protection. In this context, a trusted curator aggregates parameters optimized in decentralized fashion by multiple clients. The resulting model is then distributed back to all clients, ultimately converging to a joint representative model without explicitly having to share the data. However, the protocol is vulnerable to differential attacks, which could originate from any party contributing during federated optimization. In such an attack, a client's contribution during training and information about their data set is revealed through analyzing the distributed model. We tackle this problem and propose an algorithm for client sided differential privacy preserving federated optimization. The aim is to hide clients' contributions during training, balancing the trade-off between privacy loss and model performance. Empirical studies suggest that given a sufficiently large number of participating clients, our proposed procedure can maintain client-level differential privacy at only a minor cost in model performance.