Abstract:The increasing amount of data in astronomy provides great challenges for machine learning research. Previously, supervised learning methods achieved satisfactory recognition accuracy for the star-galaxy classification task, based on manually labeled data set. In this work, we propose a novel unsupervised approach for the star-galaxy recognition task, namely Cascade Variational Auto-Encoder (CasVAE). Our empirical results show our method outperforms the baseline model in both accuracy and stability.
Abstract:We present an extension to the model-free anomaly detection algorithm, Isolation Forest. This extension, named Extended Isolation Forest (EIF), improves the consistency and reliability of the anomaly score produced for a given data point. We show that the standard Isolation Forest produces inconsistent scores using score maps. The score maps suffer from an artifact generated as a result of how the criteria for branching operation of the binary tree is selected. We propose two different approaches for improving the situation. First we propose transforming the data randomly before creation of each tree, which results in averaging out the bias introduced in the algorithm. Second, which is the preferred way, is to allow the slicing of the data to use hyperplanes with random slopes. This approach results in improved score maps. We show that the consistency and reliability of the algorithm is much improved using this method by looking at the variance of scores of data points distributed along constant score lines. We find no appreciable difference in the rate of convergence nor in computation time between the standard Isolation Forest and EIF, which highlights its potential as anomaly detection algorithm.
Abstract:Most existing star-galaxy classifiers use the reduced summary information from catalogs, requiring careful feature extraction and selection. The latest advances in machine learning that use deep convolutional neural networks allow a machine to automatically learn the features directly from data, minimizing the need for input from human experts. We present a star-galaxy classification framework that uses deep convolutional neural networks (ConvNets) directly on the reduced, calibrated pixel values. Using data from the Sloan Digital Sky Survey (SDSS) and the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), we demonstrate that ConvNets are able to produce accurate and well-calibrated probabilistic classifications that are competitive with conventional machine learning techniques. Future advances in deep learning may bring more success with current and forthcoming photometric surveys, such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST), because deep neural networks require very little, manual feature engineering.