Abstract:Stereotactic Body Radiation Therapy (SBRT) can be a precise, minimally invasive treatment method for liver cancer and liver metastases. However, the effectiveness of SBRT relies on the accurate delivery of the dose to the tumor while sparing healthy tissue. Challenges persist in ensuring breath-hold reproducibility, with current methods often requiring manual verification of liver dome positions from kV-triggered images. To address this, we propose a proof-of-principle study of a deep learning-based pipeline to automatically delineate the liver dome from kV-planar images. From 24 patients who received SBRT for liver cancer or metastasis inside liver, 711 KV-triggered images acquired for online breath-hold verification were included in the current study. We developed a pipeline comprising a trained U-Net for automatic liver dome region segmentation from the triggered images followed by extraction of the liver dome via thresholding, edge detection, and morphological operations. The performance and generalizability of the pipeline was evaluated using 2-fold cross validation. The training of the U-Net model for liver region segmentation took under 30 minutes and the automatic delineation of a liver dome for any triggered image took less than one second. The RMSE and rate of detection for Fold1 with 366 images was (6.4 +/- 1.6) mm and 91.7%, respectively. For Fold2 with 345 images, the RMSE and rate of detection was (7.7 +/- 2.3) mm and 76.3% respectively.
Abstract:The Defense Advanced Research Projects Agency (DARPA) OFFensive Swarm-Enabled Tactics program's goal of launching 250 unmanned aerial and ground vehicles from a limited sized launch zone was a daunting challenge. The swarm's aerial vehicles were primarily multirotor platforms, which can efficiently be launched en masse. Each field exercise expected the deployment of an even larger swarm. While the launch zone's spatial area increased with each field exercise, the relative space for each vehicle was not necessarily increased, considering the increasing size of the swarm and the vehicles' associated GPS error; however, safe mission deployment and execution were expected. At the same time, achieving the mission goals required maximizing efficiency of the swarm's performance by reducing congestion that blocked vehicles from completing tactic assignments. Congestion analysis conducted before the final field exercise focused on adjusting various constraints to optimize the swarm's deployment without reducing safety. During the field exercise, data was collected that permitted analyzing the number and durations of individual vehicle blockages' impact on the resulting congestion. After the field exercise, additional analyses used the mission plan to validate the use of simulation for analyzing congestion.
Abstract:We present a dynamic path planning algorithm to navigate an amphibious rotor craft through a concave time-invariant obstacle field while attempting to minimize energy usage. We create a nonlinear quaternion state model that represents the rotor craft dynamics above and below the water. The 6 degree of freedom dynamics used within a layered architecture to generate motion paths for the vehicle to follow and the required control inputs. The rotor craft has a 3 dimensional map of its surroundings that is updated via limited range onboard sensor readings within the current medium (air or water). Path planning is done via PRM and D* Lite.