Abstract:Unsupervised object discovery is becoming an essential line of research for tackling recognition problems that require decomposing an image into entities, such as semantic segmentation and object detection. Recently, object-centric methods that leverage self-supervision have gained popularity, due to their simplicity and adaptability to different settings and conditions. However, those methods do not exploit effective techniques already employed in modern self-supervised approaches. In this work, we consider an object-centric approach in which DINO ViT features are reconstructed via a set of queried representations called slots. Based on that, we propose a masking scheme on input features that selectively disregards the background regions, inducing our model to focus more on salient objects during the reconstruction phase. Moreover, we extend the slot attention to a multi-query approach, allowing the model to learn multiple sets of slots, producing more stable masks. During training, these multiple sets of slots are learned independently while, at test time, these sets are merged through Hungarian matching to obtain the final slots. Our experimental results and ablations on the PASCAL-VOC 2012 dataset show the importance of each component and highlight how their combination consistently improves object localization. Our source code is available at: https://github.com/rishavpramanik/maskedmultiqueryslot
Abstract:Pneumonia is one of the major reasons for child mortality especially in income-deprived regions of the world. Although it can be detected and treated with very less sophisticated instruments and medication, Pneumonia detection still remains a major concern in developing countries. Computer-aided based diagnosis (CAD) systems can be used in such countries due to their lower operating costs than professional medical experts. In this paper, we propose a CAD system for Pneumonia detection from Chest X-rays, using the concepts of deep learning and a meta-heuristic algorithm. We first extract deep features from the pre-trained ResNet50, fine-tuned on a target Pneumonia dataset. Then, we propose a feature selection technique based on particle swarm optimization (PSO), which is modified using a memory-based adaptation parameter, and enriched by incorporating an altruistic behavior into the agents. We name our feature selection method as adaptive and altruistic PSO (AAPSO). The proposed method successfully eliminates non-informative features obtained from the ResNet50 model, thereby improving the Pneumonia detection ability of the overall framework. Extensive experimentation and thorough analysis on a publicly available Pneumonia dataset establish the superiority of the proposed method over several other frameworks used for Pneumonia detection. Apart from Pneumonia detection, AAPSO is further evaluated on some standard UCI datasets, gene expression datasets for cancer prediction and a COVID-19 prediction dataset. The overall results are satisfactory, thereby confirming the usefulness of AAPSO in dealing with varied real-life problems. The supporting source codes of this work can be found at https://github.com/rishavpramanik/AAPSO
Abstract:Metaheuristic algorithms are methods devised to efficiently solve computationally challenging optimization problems. Researchers have taken inspiration from various natural and physical processes alike to formulate meta-heuristics that have successfully provided near-optimal or optimal solutions to several engineering tasks. This chapter focuses on meta-heuristic algorithms modelled upon non-linear physical phenomena having a concrete optimization paradigm, having shown formidable exploration and exploitation abilities for such optimization problems. Specifically, this chapter focuses on several popular physics-based metaheuristics as well as describing the underlying unique physical processes associated with each algorithm.