Abstract:Unsupervised object discovery is commonly interpreted as the task of localizing and/or categorizing objects in visual data without the need for labeled examples. While current object recognition methods have proven highly effective for practical applications, the ongoing demand for annotated data in real-world scenarios drives research into unsupervised approaches. Furthermore, existing literature in object discovery is both extensive and diverse, posing a significant challenge for researchers that aim to navigate and synthesize this knowledge. Motivated by the evidenced interest in this avenue of research, and the lack of comprehensive studies that could facilitate a holistic understanding of unsupervised object discovery, this survey conducts an in-depth exploration of the existing approaches and systematically categorizes this compendium based on the tasks addressed and the families of techniques employed. Additionally, we present an overview of common datasets and metrics, highlighting the challenges of comparing methods due to varying evaluation protocols. This work intends to provide practitioners with an insightful perspective on the domain, with the hope of inspiring new ideas and fostering a deeper understanding of object discovery approaches.
Abstract:Unsupervised object discovery is becoming an essential line of research for tackling recognition problems that require decomposing an image into entities, such as semantic segmentation and object detection. Recently, object-centric methods that leverage self-supervision have gained popularity, due to their simplicity and adaptability to different settings and conditions. However, those methods do not exploit effective techniques already employed in modern self-supervised approaches. In this work, we consider an object-centric approach in which DINO ViT features are reconstructed via a set of queried representations called slots. Based on that, we propose a masking scheme on input features that selectively disregards the background regions, inducing our model to focus more on salient objects during the reconstruction phase. Moreover, we extend the slot attention to a multi-query approach, allowing the model to learn multiple sets of slots, producing more stable masks. During training, these multiple sets of slots are learned independently while, at test time, these sets are merged through Hungarian matching to obtain the final slots. Our experimental results and ablations on the PASCAL-VOC 2012 dataset show the importance of each component and highlight how their combination consistently improves object localization. Our source code is available at: https://github.com/rishavpramanik/maskedmultiqueryslot