Abstract:Histological staining of tissue biopsies, especially hematoxylin and eosin (H&E) staining, serves as the benchmark for disease diagnosis and comprehensive clinical assessment of tissue. However, the process is laborious and time-consuming, often limiting its usage in crucial applications such as surgical margin assessment. To address these challenges, we combine an emerging 3D quantitative phase imaging technology, termed quantitative oblique back illumination microscopy (qOBM), with an unsupervised generative adversarial network pipeline to map qOBM phase images of unaltered thick tissues (i.e., label- and slide-free) to virtually stained H&E-like (vH&E) images. We demonstrate that the approach achieves high-fidelity conversions to H&E with subcellular detail using fresh tissue specimens from mouse liver, rat gliosarcoma, and human gliomas. We also show that the framework directly enables additional capabilities such as H&E-like contrast for volumetric imaging. The quality and fidelity of the vH&E images are validated using both a neural network classifier trained on real H&E images and tested on virtual H&E images, and a user study with neuropathologists. Given its simple and low-cost embodiment and ability to provide real-time feedback in vivo, this deep learning-enabled qOBM approach could enable new workflows for histopathology with the potential to significantly save time, labor, and costs in cancer screening, detection, treatment guidance, and more.
Abstract:MUSE is a novel slide-free imaging technique for histological examination of tissues that can serve as an alternative to traditional histology. In order to bridge the gap between MUSE and traditional histology, we aim to convert MUSE images to resemble authentic hematoxylin- and eosin-stained (H&E) images. We evaluated four models: a non-machine-learning-based color-mapping unmixing-based tool, CycleGAN, DualGAN, and GANILLA. CycleGAN and GANILLA provided visually compelling results that appropriately transferred H&E style and preserved MUSE content. Based on training an automated critic on real and generated H&E images, we determined that CycleGAN demonstrated the best performance. We have also found that MUSE color inversion may be a necessary step for accurate modality conversion to H&E. We believe that our MUSE-to-H&E model can help improve adoption of novel slide-free methods by bridging a perceptual gap between MUSE imaging and traditional histology.