Abstract:Knowledge graphs have emerged to be promising datastore candidates for context augmentation during Retrieval Augmented Generation (RAG). As a result, techniques in graph representation learning have been simultaneously explored alongside principal neural information retrieval approaches, such as two-phased retrieval, also known as re-ranking. While Graph Neural Networks (GNNs) have been proposed to demonstrate proficiency in graph learning for re-ranking, there are ongoing limitations in modeling and evaluating input graph structures for training and evaluation for passage and document ranking tasks. In this survey, we review emerging GNN-based ranking model architectures along with their corresponding graph representation construction methodologies. We conclude by providing recommendations on future research based on community-wide challenges and opportunities.