Abstract:Image generation and image completion are rapidly evolving fields, thanks to machine learning algorithms that are able to realistically replace missing pixels. However, generating large high resolution images, with a large level of details, presents important computational challenges. In this work, we formulate the image generation task as completion of an image where one out of three corners is missing. We then extend this approach to iteratively build larger images with the same level of detail. Our goal is to obtain a scalable methodology to generate high resolution samples typically found in satellite imagery data sets. We introduce a conditional progressive Generative Adversarial Networks (GAN), that generates the missing tile in an image, using as input three initial adjacent tiles encoded in a latent vector by a Wasserstein auto-encoder. We focus on a set of images used by the United Nations Satellite Centre (UNOSAT) to train flood detection tools, and validate the quality of synthetic images in a realistic setup.
Abstract:With the increasing number of Machine and Deep Learning applications in High Energy Physics, easy access to dedicated infrastructure represents a requirement for fast and efficient R&D. This work explores different types of cloud services to train a Generative Adversarial Network (GAN) in a parallel environment, using Tensorflow data parallel strategy. More specifically, we parallelize the training process on multiple GPUs and Google Tensor Processing Units (TPU) and we compare two algorithms: the TensorFlow built-in logic and a custom loop, optimised to have higher control of the elements assigned to each GPU worker or TPU core. The quality of the generated data is compared to Monte Carlo simulation. Linear speed-up of the training process is obtained, while retaining most of the performance in terms of physics results. Additionally, we benchmark the aforementioned approaches, at scale, over multiple GPU nodes, deploying the training process on different public cloud providers, seeking for overall efficiency and cost-effectiveness. The combination of data science, cloud deployment options and associated economics allows to burst out heterogeneously, exploring the full potential of cloud-based services.