Abstract:Shear wave elastography involves applying a non-invasive acoustic radiation force to the tissue and imaging the induced deformation to infer its mechanical properties. This work investigates the use of convolutional neural networks to improve displacement estimation accuracy in shear wave imaging. Our training approach is completely unsupervised, which allows to learn the estimation of the induced micro-scale deformations without ground truth labels. We also present an ultrasound simulation dataset where the shear wave propagation has been simulated via finite element method. Our dataset is made publicly available along with this paper, and consists in 150 shear wave propagation simulations in both homogenous and hetegeneous media, which represents a total of 20,000 ultrasound images. We assessed the ability of our learning-based approach to characterise tissue elastic properties (i.e., Young's modulus) on our dataset and compared our results with a classical normalised cross-correlation approach.
Abstract:Ultrasound imaging is a cost-effective and radiation-free modality for visualizing anatomical structures in real-time, making it ideal for guiding surgical interventions. However, its limited field-of-view, speckle noise, and imaging artifacts make it difficult to interpret the images for inexperienced users. In this paper, we propose a new 2D ultrasound to 3D CT registration method to improve surgical guidance during ultrasound-guided interventions. Our approach adopts a dense feature matching method called LoFTR to our multimodal registration problem. We learn to predict dense coarse-to-fine correspondences using a Transformer-based architecture to estimate a robust rigid transformation between a 2D ultrasound frame and a CT scan. Additionally, a fully differentiable pose estimation method is introduced, optimizing LoFTR on pose estimation error during training. Experiments conducted on a multimodal dataset of ex vivo porcine kidneys demonstrate the method's promising results for intraoperative, trackerless ultrasound pose estimation. By mapping 2D ultrasound frames into the 3D CT volume space, the method provides intraoperative guidance, potentially improving surgical workflows and image interpretation.